Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2009, Volume 12, Number 2, Pages 161–170 (Mi sjvm14)  

This article is cited in 7 scientific papers (total in 7 papers)

A regularization method for the stationary Maxwell equations in an inhomogeneous conducting medium

I. A. Kremera, M. V. Urevb

a "Tsentr RITM"
b Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
Full-text PDF (211 kB) Citations (7)
References:
Abstract: This paper considers a problem of defining the vector potential of a magnetic field with a non-standard calibration in an inhomogeneous conducting medium. The problem in question is the one with constraints on the right-hand side and on the solution itself. The generalized and regularized statement of this problem without constraints is proposed and substantiated. This statement of the problem is equivalent to the original generalized problem with constraints.
Key words: stationary Maxwell's equations, vector potential, saddle point problem, regularization, discontinuous coefficients.
Received: 28.10.2008
Revised: 07.11.2008
English version:
Numerical Analysis and Applications, 2009, Volume 2, Issue 2, Pages 131–139
DOI: https://doi.org/10.1134/S1995423909020049
Bibliographic databases:
UDC: 519.632
Language: Russian
Citation: I. A. Kremer, M. V. Urev, “A regularization method for the stationary Maxwell equations in an inhomogeneous conducting medium”, Sib. Zh. Vychisl. Mat., 12:2 (2009), 161–170; Num. Anal. Appl., 2:2 (2009), 131–139
Citation in format AMSBIB
\Bibitem{KreUre09}
\by I.~A.~Kremer, M.~V.~Urev
\paper A regularization method for the stationary Maxwell equations in an inhomogeneous conducting medium
\jour Sib. Zh. Vychisl. Mat.
\yr 2009
\vol 12
\issue 2
\pages 161--170
\mathnet{http://mi.mathnet.ru/sjvm14}
\transl
\jour Num. Anal. Appl.
\yr 2009
\vol 2
\issue 2
\pages 131--139
\crossref{https://doi.org/10.1134/S1995423909020049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650357961}
Linking options:
  • https://www.mathnet.ru/eng/sjvm14
  • https://www.mathnet.ru/eng/sjvm/v12/i2/p161
  • This publication is cited in the following 7 articles:
    1. M. I. Ivanov, I. A. Kremer, Yu. M. Laevsky, “Solving the Pure Neumann Problem by a Mixed Finite Element Method”, Numer. Analys. Appl., 15:4 (2022), 316  crossref
    2. M. I. Ivanov, I. A. Kremer, M. V. Urev, “A solution of the degenerate Neumann problem by the finite element method”, Num. Anal. Appl., 12:4 (2019), 359–371  mathnet  crossref  crossref  isi
    3. M. V. Urev, Kh. Kh. Imomnazarov, Jian-Gang Tang, “A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics”, Num. Anal. Appl., 10:4 (2017), 347–357  mathnet  crossref  crossref  isi  elib
    4. M. I. Ivanov, I. A. Kremer, M. V. Urev, “Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium”, Comput. Math. Math. Phys., 52:3 (2012), 476–488  mathnet  crossref  zmath  adsnasa  isi  elib  elib
    5. M. V. Urev, “Convergence of a discrete scheme in a regularization method for the quasi-stationary Maxwell system in a non-homogeneous conducting medium”, Num. Anal. Appl., 4:3 (2011), 258–269  mathnet  crossref
    6. I. A. Kremer, M. V. Urev, “A Regularization Method for the Quasi-Stationary Maxwell Problem in an Inhomogeneous Conducting Medium”, J. Math. Sci., 188:4 (2013), 378–386  mathnet  crossref
    7. I. A. Kremer, M. V. Urev, “Solution of a regularized problem for a stationary magnetic field in a non-homogeneous conducting medium by a finite element method”, Num. Anal. Appl., 3:1 (2010), 25–38  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :114
    References:60
    First page:5
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025