Abstract:
A posteriori error estimation of the goal functional is considered using a differential presentation of a finite difference scheme and adjoint equations. The local approximation error is presented as a Tailor series remainder in the Lagrange form. The field of the Lagrange coefficients is determined by a high accuracy finite difference stencil affecting results of computation. The feasibility of using the Lagrange coefficients for the refining solution and estimation of its uncertainty are considered.
Key words:
a posteriori error estimation, postprocessor, adjoint equations.
Citation:
A. K. Alekseev, I. N. Makhnev, “On using the Lagrange coefficients for a posteriori error estimation”, Sib. Zh. Vychisl. Mat., 12:4 (2009), 375–388; Num. Anal. Appl., 2:4 (2009), 302–313
This publication is cited in the following 6 articles:
Alekseev A.K. Bondarev A.E., “On a Posteriori Error Estimation Using Distances Between Numerical Solutions and Angles Between Truncation Errors”, Math. Comput. Simul., 190 (2021), 892–904
A. K. Alekseev, A. E. Bondarev, “On a posteriori estimation of the approximation error norm for an ensemble of independent solutions”, Num. Anal. Appl., 13:3 (2020), 195–206
Alekseev A.K., Bondarev A.E., Kuvshinnikov A.E., “on Uncertainty Quantification Via the Ensemble of Independent Numerical Solutions”, J. Comput. Sci., 42 (2020), 101114
A. K. Alekseev, A. E. Bondarev, “Ispolzovanie ansamblya chislennykh reshenii dlya otsenki pogreshnostei usecheniya i approksimatsii”, Preprinty IPM im. M. V. Keldysha, 2019, 107, 24 pp.
A. K. Alekseev, A. E. Bondarev, A. E. Kuvshinnikov, Lecture Notes in Computer Science, 11540, Computational Science – ICCS 2019, 2019, 315
M.E. Frolov, “Implementation of error control for solving plane problems in linear elasticity by mixed finite elements”, Comp. Contin. Mech., 7:1 (2014), 73