Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2009, Volume 12, Number 4, Pages 375–388 (Mi sjvm133)  

This article is cited in 6 scientific papers (total in 6 papers)

On using the Lagrange coefficients for a posteriori error estimation

A. K. Alekseeva, I. N. Makhnevb

a Moscow Institute of Physics and Technology, Rocket and Space Corporation "Energia", Korolev, Moscow region
b Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow region
Full-text PDF (261 kB) Citations (6)
References:
Abstract: A posteriori error estimation of the goal functional is considered using a differential presentation of a finite difference scheme and adjoint equations. The local approximation error is presented as a Tailor series remainder in the Lagrange form. The field of the Lagrange coefficients is determined by a high accuracy finite difference stencil affecting results of computation. The feasibility of using the Lagrange coefficients for the refining solution and estimation of its uncertainty are considered.
Key words: a posteriori error estimation, postprocessor, adjoint equations.
Received: 25.01.2008
Revised: 02.04.2009
English version:
Numerical Analysis and Applications, 2009, Volume 2, Issue 4, Pages 302–313
DOI: https://doi.org/10.1134/S1995423909040028
Bibliographic databases:
UDC: 533+519.6
Language: Russian
Citation: A. K. Alekseev, I. N. Makhnev, “On using the Lagrange coefficients for a posteriori error estimation”, Sib. Zh. Vychisl. Mat., 12:4 (2009), 375–388; Num. Anal. Appl., 2:4 (2009), 302–313
Citation in format AMSBIB
\Bibitem{AleMak09}
\by A.~K.~Alekseev, I.~N.~Makhnev
\paper On using the Lagrange coefficients for a~posteriori error estimation
\jour Sib. Zh. Vychisl. Mat.
\yr 2009
\vol 12
\issue 4
\pages 375--388
\mathnet{http://mi.mathnet.ru/sjvm133}
\transl
\jour Num. Anal. Appl.
\yr 2009
\vol 2
\issue 4
\pages 302--313
\crossref{https://doi.org/10.1134/S1995423909040028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952872507}
Linking options:
  • https://www.mathnet.ru/eng/sjvm133
  • https://www.mathnet.ru/eng/sjvm/v12/i4/p375
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024