Abstract:
In this paper, some Monte-Carlo methods for modeling homogeneous and nonhomogeneous Poisson ensembles are offered. Generalization of the Maximum Cross-section Method is constructed and proved for modeling nonhomogeneous Poisson ensembles of points.
This publication is cited in the following 7 articles:
Dmitry S. Grebennikov, “Computational methods for multiscale modelling of virus infection dynamics”, Russian Journal of Numerical Analysis and Mathematical Modelling, 38:2 (2023), 75
Averina T.A. Rybakov K.A., “Using Maximum Cross Section Method For Filtering Jump-Diffusion Random Processes”, Russ. J. Numer. Anal. Math. Model, 35:2 (2020), 55–67
G. I. Zmievskaya, T. A. Averina, “Fluctuations of a charge on melted drops of silicon carbide during condensation”, Keldysh Institute preprints, 2018, 280–24
S. S. Artemiev, M. A. Yakunin, “Parametric analysis of the oscillatory solutions to SDEs with Wiener and Poisson components by a Monte Carlo method”, J. Appl. Industr. Math., 11:2 (2017), 157–167
T. A. Averina, G. I. Zmievskaya, “Neravnovesnaya stadiya fazovogo perekhoda pervogo roda: stokhasticheskie modeli i algoritmy resheniya”, Preprinty IPM im. M. V. Keldysha, 2017, 115, 32 pp.
T. A. Averina, “Using a randomized method of a maximum cross-section for simulating random structure systems with distributed transitions”, Num. Anal. Appl., 9:3 (2016), 179–190
Averina T.A., Rybakov K.A., “Novye metody analiza vozdeistviya puassonovskikh delta-impulsov v zadachakh radiotekhniki”, Zhurnal radioelektroniki, 2013, no. 1, 15–15