Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 2, Pages 88–99
DOI: https://doi.org/10.17377/sibjim.2016.19.208
(Mi sjim923)
 

This article is cited in 5 scientific papers (total in 5 papers)

A method of solving an exterior three-dimensional boundary value problem for the Laplace equation

A. O. Savchenkoab, V. P. Il'inab, D. S. Butyuginab

a Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Lavrent'ev av., 630090 Novosibirsk
b Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk
Full-text PDF (257 kB) Citations (5)
References:
Abstract: We develop and experimentally study the algorithms for solving three-dimensional boundary value problems for the Laplace equation in unbounded domains. The algoriths combinef the finite element method and the integral representation of the solution in homogeneous media. The proposed approach is based on the Schwarz alternating method and the consecutive solution of the interior and exterior boundary value problems in subdomains with intersection such that some iterable interface conditions are imposed on the adjacent boundaries. The convergence of the method is proved. The convergence rate of the iterative process is studied analytically in the case that the subdomains are spherical layers with known exact representations of all consecutive approximations. In this model situation, the impact is analyzed of the parameters of the algorithm on the efficiency of the method. The above approach is implemented for solving a problem with a complicated configuration of the boundary. Also, the algorithbm uses high precision finite element methods for solving the interior boundary problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated by a series of numerical experiments.
Keywords: Laplace equation, exterior boundary problem, Schwartz alternating method.
Funding agency Grant number
Russian Science Foundation 14-11-00485
Russian Foundation for Basic Research 14-07-00128
Received: 02.06.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 2, Pages 277–287
DOI: https://doi.org/10.1134/S1990478916020125
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: A. O. Savchenko, V. P. Il'in, D. S. Butyugin, “A method of solving an exterior three-dimensional boundary value problem for the Laplace equation”, Sib. Zh. Ind. Mat., 19:2 (2016), 88–99; J. Appl. Industr. Math., 10:2 (2016), 277–287
Citation in format AMSBIB
\Bibitem{SavIliBut16}
\by A.~O.~Savchenko, V.~P.~Il'in, D.~S.~Butyugin
\paper A method of solving an exterior three-dimensional boundary value problem for the Laplace equation
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 2
\pages 88--99
\mathnet{http://mi.mathnet.ru/sjim923}
\crossref{https://doi.org/10.17377/sibjim.2016.19.208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549869}
\elib{https://elibrary.ru/item.asp?id=26001729}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 2
\pages 277--287
\crossref{https://doi.org/10.1134/S1990478916020125}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971238401}
Linking options:
  • https://www.mathnet.ru/eng/sjim923
  • https://www.mathnet.ru/eng/sjim/v19/i2/p88
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025