Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 2, Pages 74–87
DOI: https://doi.org/10.17377/sibjim.2016.19.207
(Mi sjim922)
 

This article is cited in 25 scientific papers (total in 25 papers)

Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion

E. M. Rudoyab

a Lavrent'ev Institute of Hydrodynamics SB RAS, 15 Lavrent'ev av., 630090 Novosibirsk
b Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk
References:
Keywords: delamination crack, thin rigid inclusion, nonpenetration condition, variational inequality, domain decomposition method, Uzawa algorithm.
Funding agency Grant number
Russian Science Foundation 15-11-10000
Received: 12.10.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 2, Pages 264–276
DOI: https://doi.org/10.1134/S1990478916020113
Bibliographic databases:
Document Type: Article
UDC: 539.375
Language: Russian
Citation: E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion”, Sib. Zh. Ind. Mat., 19:2 (2016), 74–87; J. Appl. Industr. Math., 10:2 (2016), 264–276
Citation in format AMSBIB
\Bibitem{Rud16}
\by E.~M.~Rudoy
\paper Numerical solution of an equilibrium problem for an elastic body with a~delaminated thin rigid inclusion
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 2
\pages 74--87
\mathnet{http://mi.mathnet.ru/sjim922}
\crossref{https://doi.org/10.17377/sibjim.2016.19.207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549868}
\elib{https://elibrary.ru/item.asp?id=26001728}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 2
\pages 264--276
\crossref{https://doi.org/10.1134/S1990478916020113}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971264767}
Linking options:
  • https://www.mathnet.ru/eng/sjim922
  • https://www.mathnet.ru/eng/sjim/v19/i2/p74
  • This publication is cited in the following 25 articles:
    1. A. I. Furtsev, E. M. Rudoy, S. A. Sazhenkov, “On hyperelastic solid with thin rigid inclusion and crack subjected to global injectivity condition”, Phil. Trans. R. Soc. A., 382:2277 (2024)  crossref
    2. A. M. Khludnev, “Thin inclusion at the junction of two elastic bodies: non-coercive case”, Phil. Trans. R. Soc. A., 382:2277 (2024)  crossref
    3. T. S. Popova, “Numerical Solution of the Equilibrium Problem for a Two-dimensional Elastic Body with a Delaminated Rigid Inclusion”, Lobachevskii J Math, 45:11 (2024), 5402  crossref
    4. T. S. Popova, “On Numerical Solving of Junction Problem for the Thin Rigid and Elastic Inclusions in Elastic Body”, Lobachevskii J Math, 44:10 (2023), 4143  crossref
    5. N. P. Lazarev, V. A. Kovtunenko, “Asymptotic analysis of the problem of equilibrium of an inhomogeneous body with hinged rigid inclusions of various widths”, J. Appl. Mech. Tech. Phys., 64:5 (2024), 911–920  mathnet  mathnet  crossref  crossref
    6. Lazarev N., Rudoy E., “Optimal Location of a Finite Set of Rigid Inclusions in Contact Problems For Inhomogeneous Two-Dimensional Bodies”, J. Comput. Appl. Math., 403 (2022), 113710  crossref  mathscinet  isi  scopus
    7. A. M. Khludnev, “Junction problem for thin elastic and volume rigid inclusions in elastic body”, Phil. Trans. R. Soc. A., 380:2236 (2022)  crossref
    8. N. Lazarev, “Inverse problem for cracked inhomogeneous Kirchhoff-Love plate with two hinged rigid inclusions”, Bound. Value Probl., 2021:1 (2021), 88  crossref  mathscinet  isi  scopus
    9. T. Popova, “Mathematical and numerical modeling of junction problems for Timoshenko inclusions in elastic bodies”, 9th International Conference on Mathematical Modeling: Dedicated to the 75th Anniversary of Professor V.N. Vragov, AIP Conf. Proc., 2328, eds. Y. Grigorev, S. Popov, E. Sharin, Amer. Inst. Phys., 2021, 020004  crossref  isi  scopus
    10. E. M. Rudoy, H. Itou, N. P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, J. Appl. Industr. Math., 15:1 (2021), 129–140  mathnet  mathnet  crossref  crossref  scopus
    11. A. Furtsev, E. Rudoy, “Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates”, Int. J. Solids Struct., 202 (2020), 562–574  crossref  isi  scopus
    12. A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182 (2020), 100–111  crossref  isi  scopus
    13. N. Lazarev, G. Semenova, “On the connection between two equilibrium problems for cracked bodies in the cases of thin and volume rigid inclusions”, Bound. Value Probl., 2019, 87  crossref  mathscinet  isi  scopus
    14. N. Lazarev, V. Everstov, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, ZAMM-Z. Angew. Math. Mech., 99:3 (2019), UNSP e201800268  crossref  mathscinet  isi  scopus
    15. R. V. Namm, G. I. Tsoy, G. Woo, “Modified Lagrange functional for solving elastic problem with a crack in continuum mechanics”, Commun. Korean Math. Soc., 34:4 (2019), 1353–1364  crossref  mathscinet  zmath  isi  scopus
    16. R. V. Namm, G. I. Tsoi, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. Math. Phys., 59:4 (2019), 659–666  mathnet  crossref  crossref  isi  elib
    17. Robert Namm, Georgiy Tsoy, Ellina Vikhtenko, Communications in Computer and Information Science, 974, Optimization and Applications, 2019, 35  crossref
    18. T. S. Popova, “Problems on thin inclusions in a two-dimensional viscoelastic body”, J. Appl. Industr. Math., 12:2 (2018), 313–324  mathnet  crossref  crossref  elib  elib
    19. N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 178:2 (2018), 614–626  crossref  mathscinet  zmath  isi  scopus
    20. E. M. Rudoy, N. P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334 (2018), 18–26  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :164
    References:76
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025