Citation:
E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion”, Sib. Zh. Ind. Mat., 19:2 (2016), 74–87; J. Appl. Industr. Math., 10:2 (2016), 264–276
\Bibitem{Rud16}
\by E.~M.~Rudoy
\paper Numerical solution of an equilibrium problem for an elastic body with a~delaminated thin rigid inclusion
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 2
\pages 74--87
\mathnet{http://mi.mathnet.ru/sjim922}
\crossref{https://doi.org/10.17377/sibjim.2016.19.207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549868}
\elib{https://elibrary.ru/item.asp?id=26001728}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 2
\pages 264--276
\crossref{https://doi.org/10.1134/S1990478916020113}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971264767}
Linking options:
https://www.mathnet.ru/eng/sjim922
https://www.mathnet.ru/eng/sjim/v19/i2/p74
This publication is cited in the following 25 articles:
A. I. Furtsev, E. M. Rudoy, S. A. Sazhenkov, “On hyperelastic solid with thin rigid inclusion and crack subjected to global injectivity condition”, Phil. Trans. R. Soc. A., 382:2277 (2024)
A. M. Khludnev, “Thin inclusion at the junction of two elastic bodies: non-coercive case”, Phil. Trans. R. Soc. A., 382:2277 (2024)
T. S. Popova, “Numerical Solution of the Equilibrium Problem for a Two-dimensional Elastic Body with a Delaminated Rigid Inclusion”, Lobachevskii J Math, 45:11 (2024), 5402
T. S. Popova, “On Numerical Solving of Junction Problem for the Thin Rigid and Elastic Inclusions in Elastic Body”, Lobachevskii J Math, 44:10 (2023), 4143
N. P. Lazarev, V. A. Kovtunenko, “Asymptotic analysis of the problem of equilibrium of an inhomogeneous body with hinged rigid inclusions of various widths”, J. Appl. Mech. Tech. Phys., 64:5 (2024), 911–920
Lazarev N., Rudoy E., “Optimal Location of a Finite Set of Rigid Inclusions in Contact Problems For Inhomogeneous Two-Dimensional Bodies”, J. Comput. Appl. Math., 403 (2022), 113710
A. M. Khludnev, “Junction problem for thin elastic and volume rigid inclusions in elastic body”, Phil. Trans. R. Soc. A., 380:2236 (2022)
N. Lazarev, “Inverse problem for cracked inhomogeneous Kirchhoff-Love plate with two hinged rigid inclusions”, Bound. Value Probl., 2021:1 (2021), 88
T. Popova, “Mathematical and numerical modeling of junction problems for Timoshenko inclusions in elastic bodies”, 9th International Conference on Mathematical Modeling: Dedicated to the 75th Anniversary of Professor V.N. Vragov, AIP Conf. Proc., 2328, eds. Y. Grigorev, S. Popov, E. Sharin, Amer. Inst. Phys., 2021, 020004
E. M. Rudoy, H. Itou, N. P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, J. Appl. Industr. Math., 15:1 (2021), 129–140
A. Furtsev, E. Rudoy, “Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates”, Int. J. Solids Struct., 202 (2020), 562–574
A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182 (2020), 100–111
N. Lazarev, G. Semenova, “On the connection between two equilibrium problems for cracked bodies in the cases of thin and volume rigid inclusions”, Bound. Value Probl., 2019, 87
N. Lazarev, V. Everstov, “Optimal location of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, ZAMM-Z. Angew. Math. Mech., 99:3 (2019), UNSP e201800268
R. V. Namm, G. I. Tsoy, G. Woo, “Modified Lagrange functional for solving elastic problem with a crack in continuum mechanics”, Commun. Korean Math. Soc., 34:4 (2019), 1353–1364
R. V. Namm, G. I. Tsoi, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. Math. Phys., 59:4 (2019), 659–666
Robert Namm, Georgiy Tsoy, Ellina Vikhtenko, Communications in Computer and Information Science, 974, Optimization and Applications, 2019, 35
T. S. Popova, “Problems on thin inclusions in a two-dimensional viscoelastic body”, J. Appl. Industr. Math., 12:2 (2018), 313–324
N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 178:2 (2018), 614–626
E. M. Rudoy, N. P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334 (2018), 18–26