Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 1, Pages 94–105
DOI: https://doi.org/10.17377/sibjim.2016.19.109
(Mi sjim915)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the numerical study of periodic solutions to delay equations in biological models

S. I. Fadeevab, V. V. Kogaiab, T. M. Khlebodarovac, V. A. Likhoshvaibc

a Sobolev Institute of Mathematics SB RAS, 4 Koptyug av., 630090 Novosibirsk
b Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk
c Institute of Cytology and Genetics SB RAS, 10 Lavrent'ev av., 630090 Novosibirsk
Full-text PDF (467 kB) Citations (2)
References:
Abstract: We present the results of a numerical study of periodic solutions of to a nonlinear delay equation in connection with mathematical models having a real biological prototype. The problem is formulated as a boundary value problem for a delay equation with periodicity and transversality conditions. We propose a spline-collocation finite-difference scheme of the boundary value problem using the Hermite interpolation cubic spline of class $C^1$ with fourth-order error. For the numerical study of the system of nonlinear equations of the difference scheme, the parameter-extension method is used, which allows us to identify the possible nonuniqueness of a solution to the boundary value problem and hence the nonuniqueness of periodic solutions regardless of their stability. It is shown by examples that periodic oscillations arise for values of the parameters typical for real molecular-genetic systems of higher organisms, for which the principle of “delay” is rather easy to implement.
Keywords: ordinary differential equation, delay, continuation method, boundary value problem, oscillation.
Received: 25.03.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 1, Pages 86–96
DOI: https://doi.org/10.1134/S1990478916010105
Bibliographic databases:
Document Type: Article
UDC: 519.62+577.218+57.023
Language: Russian
Citation: S. I. Fadeev, V. V. Kogai, T. M. Khlebodarova, V. A. Likhoshvai, “On the numerical study of periodic solutions to delay equations in biological models”, Sib. Zh. Ind. Mat., 19:1 (2016), 94–105; J. Appl. Industr. Math., 10:1 (2016), 86–96
Citation in format AMSBIB
\Bibitem{FadKogKhl16}
\by S.~I.~Fadeev, V.~V.~Kogai, T.~M.~Khlebodarova, V.~A.~Likhoshvai
\paper On the numerical study of periodic solutions to delay equations in biological models
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 1
\pages 94--105
\mathnet{http://mi.mathnet.ru/sjim915}
\crossref{https://doi.org/10.17377/sibjim.2016.19.109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549861}
\elib{https://elibrary.ru/item.asp?id=25591895}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 1
\pages 86--96
\crossref{https://doi.org/10.1134/S1990478916010105}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961634141}
Linking options:
  • https://www.mathnet.ru/eng/sjim915
  • https://www.mathnet.ru/eng/sjim/v19/i1/p94
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :82
    References:84
    First page:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024