Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 1, Pages 82–93
DOI: https://doi.org/10.17377/sibjim.2016.19.108
(Mi sjim914)
 

On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces

Ar. S. Tersenovab

a Sobolev Institute of Mathematics SB RAS, 4 Koptyug av., 630090 Novosibirsk
b Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk
References:
Abstract: Consider the Dirichlet problem for an inhomogeneous $p$-Laplace equation with nonlinear source in presence of external mass forces, we obtain new sufficient conditions for the existence of a weak nonnegative bounded solution. The conditions are written in explicit form in terms of the data of the problem.
Keywords: $p$-Laplace equation, regularized equation, a priori estimate.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-08275
Received: 26.06.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 1, Pages 115–125
DOI: https://doi.org/10.1134/S1990478916010130
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: Ar. S. Tersenov, “On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces”, Sib. Zh. Ind. Mat., 19:1 (2016), 82–93; J. Appl. Industr. Math., 10:1 (2016), 115–125
Citation in format AMSBIB
\Bibitem{Ter16}
\by Ar.~S.~Tersenov
\paper On the existence of nonnegative solutions to the Dirichlet boundary value problem for the $p$-Laplace equation in presence of external mass forces
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 1
\pages 82--93
\mathnet{http://mi.mathnet.ru/sjim914}
\crossref{https://doi.org/10.17377/sibjim.2016.19.108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549860}
\elib{https://elibrary.ru/item.asp?id=25591894}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 1
\pages 115--125
\crossref{https://doi.org/10.1134/S1990478916010130}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961627856}
Linking options:
  • https://www.mathnet.ru/eng/sjim914
  • https://www.mathnet.ru/eng/sjim/v19/i1/p82
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025