Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 1, Pages 18–26
DOI: https://doi.org/10.17377/sibjim.2016.19.102
(Mi sjim908)
 

This article is cited in 1 scientific paper (total in 1 paper)

An underdetermined problem of integral geometry for the generalized Radon transform

D. S. Anikonovab, Ya. A. Kipriyanovb

a Sobolev Institute of Mathematics SB RAS, 4 Koptyug av., 630090 Novosibirsk
b Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk
Full-text PDF (226 kB) Citations (1)
References:
Abstract: Under study is some new problem of integral geometry. All planes are considered in the three-dimensional Euclidean space. The data are given by the integrals over all such planes of an unknown piecewise-smooth function depending both on the spatial variables and the variables characterizing the planes. The sought object is an integrant discontinuity surface of the first kind. The uniquiness theorem of of the desired surface is proved. The research od the papert presents an aspects of the theory of probing an unknown medium by various physical signals.
Keywords: integral geometry, generalized Radon transform, probing, unknown boundaries.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00275
16-31-00112 мол_а
Received: 29.06.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 1, Pages 21–28
DOI: https://doi.org/10.1134/S1990478916010038
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: D. S. Anikonov, Ya. A. Kipriyanov, “An underdetermined problem of integral geometry for the generalized Radon transform”, Sib. Zh. Ind. Mat., 19:1 (2016), 18–26; J. Appl. Industr. Math., 10:1 (2016), 21–28
Citation in format AMSBIB
\Bibitem{AniKip16}
\by D.~S.~Anikonov, Ya.~A.~Kipriyanov
\paper An underdetermined problem of integral geometry for the generalized Radon transform
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 1
\pages 18--26
\mathnet{http://mi.mathnet.ru/sjim908}
\crossref{https://doi.org/10.17377/sibjim.2016.19.102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549854}
\elib{https://elibrary.ru/item.asp?id=25591887}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 1
\pages 21--28
\crossref{https://doi.org/10.1134/S1990478916010038}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961671425}
Linking options:
  • https://www.mathnet.ru/eng/sjim908
  • https://www.mathnet.ru/eng/sjim/v19/i1/p18
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :76
    References:75
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024