Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 1, Pages 3–17
DOI: https://doi.org/10.17377/sibjim.2016.19.101
(Mi sjim907)
 

This article is cited in 10 scientific papers (total in 10 papers)

A joint creeping motion of three fluids in a flat layer: a priori estimates and convergence to a stationary regime

V. K. Andreevab, E. N. Cheremnykhab

a Institute of Computational Modeling SB RAS, 50/44 Akademgorodok, 660036 Krasnoyarsk
b Siberian Federal University, 79 Svobodnyi av., 660041 Krasnoyarsk
References:
Abstract: We study a partially invariant solution of rank 2 and defect 3e to the equations of a viscous heat-conducting fluid. It is interpreted as a two-dimensional motion of three immiscible fluids in a flat channel bounded by solid walls for which the distribution of temperature is known. From a mathematical point of view, the resulting initial boundary value problem is nonlinear and inverse. Under some assumptions (often fulfilled in practical applications), the problem is replaced by a linear one. We obtain a priori estimates as well as the exact stationary solution and prove that, the solution tends to a stationary regime if the temperatures of the walls stabilize with time.
Keywords: thermocapillarity, a priori estimate, conjugate boundary value problem, asymptotic behavior.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00067
Received: 16.05.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 1, Pages 7–20
DOI: https://doi.org/10.1134/S1990478916010026
Bibliographic databases:
Document Type: Article
UDC: 517.941.1+532.529.5
Language: Russian
Citation: V. K. Andreev, E. N. Cheremnykh, “A joint creeping motion of three fluids in a flat layer: a priori estimates and convergence to a stationary regime”, Sib. Zh. Ind. Mat., 19:1 (2016), 3–17; J. Appl. Industr. Math., 10:1 (2016), 7–20
Citation in format AMSBIB
\Bibitem{AndLem16}
\by V.~K.~Andreev, E.~N.~Cheremnykh
\paper A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/sjim907}
\crossref{https://doi.org/10.17377/sibjim.2016.19.101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549853}
\elib{https://elibrary.ru/item.asp?id=25591886}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 1
\pages 7--20
\crossref{https://doi.org/10.1134/S1990478916010026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961652506}
Linking options:
  • https://www.mathnet.ru/eng/sjim907
  • https://www.mathnet.ru/eng/sjim/v19/i1/p3
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025