Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 1, Pages 3–17
DOI: https://doi.org/10.17377/sibjim.2016.19.101
(Mi sjim907)
 

This article is cited in 10 scientific papers (total in 10 papers)

A joint creeping motion of three fluids in a flat layer: a priori estimates and convergence to a stationary regime

V. K. Andreevab, E. N. Cheremnykhab

a Institute of Computational Modeling SB RAS, 50/44 Akademgorodok, 660036 Krasnoyarsk
b Siberian Federal University, 79 Svobodnyi av., 660041 Krasnoyarsk
References:
Abstract: We study a partially invariant solution of rank 2 and defect 3e to the equations of a viscous heat-conducting fluid. It is interpreted as a two-dimensional motion of three immiscible fluids in a flat channel bounded by solid walls for which the distribution of temperature is known. From a mathematical point of view, the resulting initial boundary value problem is nonlinear and inverse. Under some assumptions (often fulfilled in practical applications), the problem is replaced by a linear one. We obtain a priori estimates as well as the exact stationary solution and prove that, the solution tends to a stationary regime if the temperatures of the walls stabilize with time.
Keywords: thermocapillarity, a priori estimate, conjugate boundary value problem, asymptotic behavior.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00067
Received: 16.05.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 1, Pages 7–20
DOI: https://doi.org/10.1134/S1990478916010026
Bibliographic databases:
Document Type: Article
UDC: 517.941.1+532.529.5
Language: Russian
Citation: V. K. Andreev, E. N. Cheremnykh, “A joint creeping motion of three fluids in a flat layer: a priori estimates and convergence to a stationary regime”, Sib. Zh. Ind. Mat., 19:1 (2016), 3–17; J. Appl. Industr. Math., 10:1 (2016), 7–20
Citation in format AMSBIB
\Bibitem{AndLem16}
\by V.~K.~Andreev, E.~N.~Cheremnykh
\paper A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/sjim907}
\crossref{https://doi.org/10.17377/sibjim.2016.19.101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549853}
\elib{https://elibrary.ru/item.asp?id=25591886}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 1
\pages 7--20
\crossref{https://doi.org/10.1134/S1990478916010026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84961652506}
Linking options:
  • https://www.mathnet.ru/eng/sjim907
  • https://www.mathnet.ru/eng/sjim/v19/i1/p3
  • This publication is cited in the following 10 articles:
    1. L. S. Goruleva, E. Yu. Prosviryakov, “A New Class of Exact Solutions to Magnetohydrodynamics Equations for Describing Convective Flows of Binary Fluids”, Tech. Phys., 68:10 (2023), 292  crossref
    2. Sergey V. Ershkov, Evgeniy Yu. Prosviryakov, Natalya V. Burmasheva, Victor Christianto, “Solving the Hydrodynamical System of Equations of Inhomogeneous Fluid Flows with Thermal Diffusion: A Review”, Symmetry, 15:10 (2023), 1825  crossref
    3. Larisa Goruleva, Evgenii Prosviryakov, “A New Class of Exact Solutions for Magnetohydrodynamics Equations to Describe Convective Flows of Binary Liquids”, HFIM, 25:4 (2023)  crossref
    4. M V Efimova, “The effect of interfacial heat transfer energy on a two-layer creeping flow in a flat channel”, J. Phys.: Conf. Ser., 1268:1 (2019), 012022  crossref
    5. E. N. Cheremnykh, “A Priori Estimates of the Solution of the Problem of the Unidirectional Thermogravitational Motion of a Viscous Liquid in the Plane Channel”, Math. Notes, 103:1 (2018), 145–154  mathnet  crossref  crossref  mathscinet  isi  elib
    6. M. V. Efimova, N. Darabi, “Thermal-concentration convection in a system of viscous liquid and binary mixture in a plane channel with small Marangoni numbers”, J. Appl. Mech. Tech. Phys., 59:5 (2018), 847–856  crossref  mathscinet  zmath  isi  scopus
    7. E. N. Cheremnykh, “Unidirectional heat-gravitational motion of viscous fluid in a flat channel with a given flow rate”, J. Appl. Mech. Tech. Phys., 59:3 (2018), 416–421  crossref  mathscinet  zmath  isi  scopus
    8. V. V. Privalova, E. Yu. Prosviryakov, “Couette-Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid with allowance made for heat recovery”, Vestn. Samar. Gos. Tekhnicheskogo Univ.-Ser. Fiz.-Mat. Nauka, 22:3 (2018), 532–548  crossref  zmath  isi
    9. E. V. Rezanova, I. A. Shefer, “Influence of the thermal load on the characteristics of a flow with evaporation”, J. Appl. Industr. Math., 11:2 (2017), 274–283  mathnet  crossref  crossref  elib
    10. V. K. Andreev, E. N. Cheremnykh, “The unidirectional motion of two heat-conducting liquids in a flat channel”, All-Russian Conference With International Participation Modern Problems of Continuum Mechanics and Explosion Physics Dedicated to the 60th Anniversary of Lavrentyev Institute of Hydrodynamics SB RAS, Journal of Physics Conference Series, 894, eds. Chesnokov A., Pruuel E., Shelukhin V., IOP Publishing Ltd, 2017, UNSP 012106  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:407
    Full-text PDF :90
    References:107
    First page:56
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025