Abstract:
We consider the plane elasticity problem for a body with a rigid inclusion and a crack along the boundary between the elastic matrix and rigid inclusion. We show that this problem possesses J- and M-invariant integrals. In particular, we construct an invariant integral of Cherepanov–Rice type for straight cracks.
Keywords:
invariant integrals, rigid inclusion, crack, derivative of the energy functional, Cherepanov–Rice integral.
Citation:
E. M. Rudoǐ, “Invariant integrals in the plane elasticity problem for bodies with rigid inclusions and cracks”, Sib. Zh. Ind. Mat., 15:1 (2012), 99–109; J. Appl. Industr. Math., 6:3 (2012), 371–380