Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2012, Volume 15, Number 1, Pages 99–109 (Mi sjim714)  

This article is cited in 11 scientific papers (total in 11 papers)

Invariant integrals in the plane elasticity problem for bodies with rigid inclusions and cracks

E. M. Rudoĭab

a Lavrent'ev Institute of Hydrodynamics SB RAS, Novosibirsk, RUSSIA
b Novosibirsk State University, Novosibirsk, RUSSIA
References:
Abstract: We consider the plane elasticity problem for a body with a rigid inclusion and a crack along the boundary between the elastic matrix and rigid inclusion. We show that this problem possesses $J$- and $M$-invariant integrals. In particular, we construct an invariant integral of Cherepanov–Rice type for straight cracks.
Keywords: invariant integrals, rigid inclusion, crack, derivative of the energy functional, Cherepanov–Rice integral.
Received: 21.01.2011
English version:
Journal of Applied and Industrial Mathematics, 2012, Volume 6, Issue 3, Pages 371–380
DOI: https://doi.org/10.1134/S199047891203012X
Bibliographic databases:
Document Type: Article
UDC: 539.375
Language: Russian
Citation: E. M. Rudoǐ, “Invariant integrals in the plane elasticity problem for bodies with rigid inclusions and cracks”, Sib. Zh. Ind. Mat., 15:1 (2012), 99–109; J. Appl. Industr. Math., 6:3 (2012), 371–380
Citation in format AMSBIB
\Bibitem{Rud12}
\by E.~M.~Rudo{\v\i}
\paper Invariant integrals in the plane elasticity problem for bodies with rigid inclusions and cracks
\jour Sib. Zh. Ind. Mat.
\yr 2012
\vol 15
\issue 1
\pages 99--109
\mathnet{http://mi.mathnet.ru/sjim714}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112337}
\transl
\jour J. Appl. Industr. Math.
\yr 2012
\vol 6
\issue 3
\pages 371--380
\crossref{https://doi.org/10.1134/S199047891203012X}
Linking options:
  • https://www.mathnet.ru/eng/sjim714
  • https://www.mathnet.ru/eng/sjim/v15/i1/p99
  • This publication is cited in the following 11 articles:
    1. Zhiming Hu, Xin Feng, Xiang Mu, Gan Song, Liangliang Zhang, Yang Gao, “Eshelby tensors and effective stiffness of one-dimensional orthorhombic quasicrystal composite materials containing ellipsoidal particles”, Arch Appl Mech, 93:8 (2023), 3275  crossref
    2. Furtsev A., Itou H., Rudoy E., “Modeling of Bonded Elastic Structures By a Variational Method: Theoretical Analysis and Numerical Simulation”, Int. J. Solids Struct., 182 (2020), 100–111  crossref  isi  scopus
    3. V. A. Puris, “The conjugation problem for thin elastic and rigid inclusions in an elastic body”, J. Appl. Industr. Math., 11:3 (2017), 444–452  mathnet  crossref  crossref  elib
    4. E. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, ZAMM Z. Angew. Math. Phys., 68:1 (2017), 19  crossref  mathscinet  zmath  isi  scopus
    5. E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion”, J. Appl. Industr. Math., 10:2 (2016), 264–276  mathnet  crossref  crossref  mathscinet  elib
    6. E. M. Rudoy, “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Meth. Appl. Sci., 39:17 (2016), 4994–5006  crossref  isi
    7. V. V. Shcherbakov, “The Griffith formula and $J$-integral for elastic bodies with Timoshenko inclusions”, ZAMM Z. Angew. Math. Mech., 96:11 (2016), 1306–1317  crossref  isi
    8. E. M. Rudoy, V. V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sib. Electron. Math. Rep., 13 (2016), 395–410  crossref  isi
    9. V. V. Shcherbakov, “Existence of an optimal shape for thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Industr. Math., 8:1 (2014), 97–105  mathnet  crossref  mathscinet
    10. Lazarev N.P., “Equilibrium Problem for a Timoshenko Plate with an Oblique Crack”, J. Appl. Mech. Tech. Phys., 54:4 (2013), 662–671  crossref  mathscinet  zmath  isi  elib  scopus
    11. N. P. Lazarev, “Invariantnye integraly v zadache o ravnovesii plastiny Timoshenko s usloviyami tipa Sinorini na treschine”, Vestn. SamGU. Estestvennonauchn. ser., 2013, no. 6(107), 100–115  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:493
    Full-text PDF :227
    References:77
    First page:19
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025