Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2012, Volume 15, Number 1, Pages 86–98 (Mi sjim713)  

This article is cited in 30 scientific papers (total in 30 papers)

Stability estimates for the solution in the problem of determining the kernel of the viscoelasticity equation

V. G. Romanov

Sobolev Institute of Mathematics SB RAS, Novosibirsk, RUSSIA
References:
Abstract: For the integrodifferential equation of 2-dimensional viscoelasticity we study the problem of determining the spatial part of the kernel of the integral part of the equation on assuming that the unknown function is supported on some compact region $\Omega$. As data required for solving this inverse problem, on the boundary of $\Omega$ we specify the traces of the solution to the direct Cauchy problem and its normal derivative on some finite interval of time. A significant circumstance in the statement of this problem is that the solution to the direct Cauchy problem corresponds to zero initial data and time impulsive force localized on a fixed straight line disjoint from $\Omega$. The main result of this article is a Lipschitz estimate for the conditional stability of the solution to this inverse problem.
Keywords: viscoelasticity, inverse problem, stability, uniqueness.
Received: 25.05.2011
English version:
Journal of Applied and Industrial Mathematics, 2012, Volume 6, Issue 3, Pages 360–370
DOI: https://doi.org/10.1134/S1990478912030118
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. G. Romanov, “Stability estimates for the solution in the problem of determining the kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 15:1 (2012), 86–98; J. Appl. Industr. Math., 6:3 (2012), 360–370
Citation in format AMSBIB
\Bibitem{Rom12}
\by V.~G.~Romanov
\paper Stability estimates for the solution in the problem of determining the kernel of the viscoelasticity equation
\jour Sib. Zh. Ind. Mat.
\yr 2012
\vol 15
\issue 1
\pages 86--98
\mathnet{http://mi.mathnet.ru/sjim713}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112336}
\transl
\jour J. Appl. Industr. Math.
\yr 2012
\vol 6
\issue 3
\pages 360--370
\crossref{https://doi.org/10.1134/S1990478912030118}
Linking options:
  • https://www.mathnet.ru/eng/sjim713
  • https://www.mathnet.ru/eng/sjim/v15/i1/p86
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:726
    Full-text PDF :162
    References:104
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024