Abstract:
The topological-algebraic characteristics of ordinary and distributed linear differential extensions are studied, and a qualitative analysis is carried out of the existence of strong differential (A,B)-models realized over the sets of observed dynamical processes (by families of the pairs trajectory-control) that admit an a posteriori extension.
Citation:
A. V. Daneev, A. V. Lakeev, V. A. Rusanov, M. V. Rusanov, “On the theory of realization of strong differential models. I”, Sib. Zh. Ind. Mat., 8:1 (2005), 53–63; J. Appl. Industr. Math., 1:3 (2007), 273–282
This publication is cited in the following 7 articles:
Rusanov V.A., Banshchikov A.V., Daneev A.V., Lakeyev A.V., “Maximum Entropy Principle in the Differential Second-Order Realization of a Non-Stationary Bilinear System”, Adv. Differ. Equ. Control Process., 20:2 (2019), 223–248
Rusanov V.A., Daneev A.V., Linke Yu.E., “To the Geometrical Theory of Differential Realization of Dynamic Processes in a Hilbert Space”, Cybern. Syst. Anal., 53:4 (2017), 554–564
A. V. Lakeev, Yu. E. Linke, V. A. Rusanov, “O razreshimosti zadachi realizatsii operator-funktsii nelineinogo regulyatora dinamicheskoi sistemy vtorogo poryadka”, Sib. zhurn. industr. matem., 18:4 (2015), 61–74
V. A. Rusanov, A. V. Daneev, A. E. Kumenko, D. Yu. Sharpinskiy, 2008 19th International Conference on Systems Engineering, 2008, 27
A. V. Daneev, V. A. Rusanov, D. Yu. Sharpinskii, “The entropy maximum principle in the structural identification of dynamical systems: an analytic approach”, Russian Math. (Iz. VUZ), 49:11 (2005), 14–22
A. V. Daneev, A. V. Lakeev, V. A. Rusanov, “On the theory of realization of strong differential models. II”, J. Appl. Industr. Math., 1:3 (2007), 283–292