Loading [MathJax]/jax/output/SVG/config.js
Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2005, Volume 1, 006, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2005.006
(Mi sigma6)
 

This article is cited in 13 scientific papers (total in 13 papers)

Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches

O. I. Morozov

Moscow State Technical University of Civil Aviation, 125993 Moscow, Russia
References:
Abstract: In this review article we discuss four recent methods for computing Maurer–Cartan structure equations of symmetry groups of differential equations. Examples include solution of the contact equivalence problem for linear hyperbolic equations and finding a contact transformation between the generalized Hunter–Saxton equation and the Euler–Poisson equation.
Keywords: Lie pseudo-groups; Maurer–Cartan forms; structure equations;symmetries of differential equations.
Received: August 8, 2005; in final form September 29, 2005; Published online October 13, 2005
Bibliographic databases:
Document Type: Article
MSC: 58H05; 58J70; 35A30
Language: English
Citation: O. I. Morozov, “Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches”, SIGMA, 1 (2005), 006, 14 pp.
Citation in format AMSBIB
\Bibitem{Mor05}
\by O.~I.~Morozov
\paper Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches
\jour SIGMA
\yr 2005
\vol 1
\papernumber 006
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma6}
\crossref{https://doi.org/10.3842/SIGMA.2005.006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2173593}
\zmath{https://zbmath.org/?q=an:1092.58017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207064600006}
Linking options:
  • https://www.mathnet.ru/eng/sigma6
  • https://www.mathnet.ru/eng/sigma/v1/p6
  • This publication is cited in the following 13 articles:
    1. Denis Blackmore, Yarema Prykarpatsky, Mykola M. Prytula, Denys Dutykh, Anatolij K. Prykarpatski, “On the integrability of a new generalized Gurevich-Zybin dynamical system, its Hunter-Saxton type reduction and related mysterious symmetries”, Anal.Math.Phys., 12:2 (2022)  crossref
    2. Morozov O.I., “Integrability Structures of the Generalized Hunter-Saxton Equation”, Anal. Math. Phys., 11:2 (2021), 50  crossref  mathscinet  isi
    3. Olver P.J., Valiquette F., “Recursive Moving Frames For Lie Pseudo-Groups”, Results Math., 73:2 (2018), UNSP 57  crossref  mathscinet  isi  scopus
    4. Asadi, N.; Nadjafikhah, M., “Geometry of Boiti-Leon-Manna-Pempinelli equation”, Indian Journal of Science and Technology, 8:33 (2015)  crossref  mathscinet  zmath  scopus
    5. Kruglikov B., Morozov O., “Sdiff(2) and Uniqueness of the Plebanski Equation”, J. Math. Phys., 53:8 (2012), 083506  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    6. Olver P.J., Pohjanpelto J., “Persistence of Freeness for Lie Pseudogroup Actions”, Ark. Mat., 50:1 (2012), 165–182  crossref  mathscinet  zmath  isi  elib  scopus
    7. Ndogmo J.C., “On Dummy Variables of Structure-Preserving Transformations”, Math. Probl. Eng., 2012, 312658  crossref  mathscinet  zmath  isi  elib  scopus
    8. Olver P., “Recent advances in the theory and application of lie pseudo-groups”, XVIII International Fall Workshop on Geometry and Physics, AIP Conference Proceedings, 1260, 2010, 35–63  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. Olver P.J., Pohjanpelto J., “Differential invariant algebras of Lie pseudo-groups”, Advances in Mathematics, 222:5 (2009), 1746–1792  crossref  mathscinet  zmath  isi  scopus
    10. Olver P.J., Pohjanpelto J., “Moving Frames for Lie Pseudo-Groups”, Canadian Journal of Mathematics-Journal Canadien de Mathematiques, 60:6 (2008), 1336–1386  crossref  mathscinet  zmath  isi  scopus
    11. Olver P.J., Pohjanpelto J., “Pseudo-Groups, Moving Frames, and Differential Invariants”, IMA Volumes in Mathematics and its Applications, 144 (2008), 127–149  crossref  mathscinet  zmath  isi
    12. Morozov, OI, “Coverings of differential equations and Cartan's structure theory of Lie pseudo-groups”, Acta Applicandae Mathematicae, 99:3 (2007), 309  crossref  mathscinet  zmath  isi  elib  scopus
    13. Olver P.J., Pohjanpelto J., “Differential Invariants for Lie Pseudo-Groups”, Grobner Bases in Symbolic Analysis, Radon Series on Computational and Applied Mathematics, 2, eds. Rosenkranz M., Wang D., Walter de Gruyter, 2007, 217–243  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :83
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025