Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2005, Volume 1, 005, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2005.005
(Mi sigma5)
 

This article is cited in 24 scientific papers (total in 24 papers)

Andrew Lenard: A Mystery Unraveled

Jeffery Praught, Roman G. Smirnov

Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 3J5
References:
Abstract: The theory of bi-Hamiltonian systems has its roots in what is commonly referred to as the “Lenard recursion formula”. The story about the discovery of the formula told by Andrew Lenard is the subject of this article.
Keywords: Lenard's recursion formula; bi-Hamiltonian formalism; Korteweg–de Vries equation.
Received: September 29, 2005; in final form October 3, 2005; Published online October 8, 2005
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jeffery Praught, Roman G. Smirnov, “Andrew Lenard: A Mystery Unraveled”, SIGMA, 1 (2005), 005, 7 pp.
Citation in format AMSBIB
\Bibitem{PraSmi05}
\by Jeffery Praught, Roman G. Smirnov
\paper Andrew Lenard: A~Mystery Unraveled
\jour SIGMA
\yr 2005
\vol 1
\papernumber 005
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma5}
\crossref{https://doi.org/10.3842/SIGMA.2005.005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2173592}
\zmath{https://zbmath.org/?q=an:1128.37045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207064600005}
Linking options:
  • https://www.mathnet.ru/eng/sigma5
  • https://www.mathnet.ru/eng/sigma/v1/p5
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:397
    Full-text PDF :79
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024