Abstract:
The theory of bi-Hamiltonian systems has its roots in what is commonly referred to as the “Lenard recursion formula”. The story about the discovery of the formula told by Andrew Lenard is the subject of this article.
\Bibitem{PraSmi05}
\by Jeffery Praught, Roman G. Smirnov
\paper Andrew Lenard: A~Mystery Unraveled
\jour SIGMA
\yr 2005
\vol 1
\papernumber 005
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma5}
\crossref{https://doi.org/10.3842/SIGMA.2005.005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2173592}
\zmath{https://zbmath.org/?q=an:1128.37045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207064600005}
Linking options:
https://www.mathnet.ru/eng/sigma5
https://www.mathnet.ru/eng/sigma/v1/p5
This publication is cited in the following 24 articles:
Roman G. Smirnov, Kunpeng Wang, “The Cobb–Douglas Production Function and the Old Bowley's Law”, SIGMA, 20 (2024), 045, 20 pp.
José Luis Jaramillo, Michele Lenzi, Carlos F. Sopuerta, “Integrability in perturbed black holes: Background hidden structures”, Phys. Rev. D, 110:10 (2024)
Michele Lenzi, Carlos F. Sopuerta, “Black hole greybody factors from Korteweg–de Vries integrals: Theory”, Phys. Rev. D, 107:4 (2023)
Tempesta P. Tondo G., “Haantjes Algebras of Classical Integrable Systems”, Ann. Mat. Pura Appl., 201:1 (2022), 57–90
Alexander G. Rasin, Jeremy Schiff, “Four Symmetries of the KdV Equation”, J Nonlinear Sci, 32:5 (2022)
Hassan Boualem, Robert Brouzet, “Generically, Arnold–Liouville Systems Cannot be Bi-Hamiltonian”, SIGMA, 17 (2021), 096, 17 pp.
Lenzi M., Sopuerta C.F., “Darboux Covariance: a Hidden Symmetry of Perturbed Schwarzschild Black Holes”, Phys. Rev. D, 104:12 (2021), 124068
A. V. Domrin, B. I. Suleimanov, M. A. Shumkin, “Global Meromorphy of Solutions of the Painlevé Equations and Their Hierarchies”, Proc. Steklov Inst. Math., 311 (2020), 98–113
Levandovskiy S.A., Rozhkov G.K., Moller A.B., Tulupov O.N., “The Concept of a Mini-Mill Rerolling Used Rails as a Raw Material”, CIS Iron Steel Rev., 19 (2020), 27–32
Roberto Camassa, Gregorio Falqui, Giovanni Ortenzi, Marco Pedroni, “On the Geometry of Extended Self-Similar Solutions of the Airy Shallow Water Equations”, SIGMA, 15 (2019), 087, 17 pp.
Du D., Yang X., “An Alternative Approach To Solve the Mixed AKNS Equations”, J. Math. Anal. Appl., 414:2 (2014), 850–870
Tondo G., “Generalized Lenard Chains and Multi-Separability of the Smorodinsky-Winternitz System”, Physics and Mathematics of Nonlinear Phenomena 2013 (Pmnp2013), Journal of Physics Conference Series, 482, IOP Publishing Ltd, 2014, 012042
Rasin A.G., Schiff J., “The Gardner Method for Symmetries”, J. Phys. A-Math. Theor., 46:15 (2013), 155202
Tempesta P., Tondo G., “Generalized Lenard Chains, Separation of Variables, and Superintegrability”, Phys. Rev. E, 85:4, 2 (2012), 046602
Adrian Constantin, Boris Kolev, Number Theory, Analysis and Geometry, 2012, 143
Baldwin D.E., Hereman W., “A symbolic algorithm for computing recursion operators of nonlinear partial differential equations”, Int J Comput Math, 87:5 (2010), 1094–1119
Wang, JP, “Lenard scheme for two-dimensional periodic Volterra chain”, Journal of Mathematical Physics, 50:2 (2009), 023506
A. V. Bolsinov, K. M. Zuev, “A Formal Frobenius Theorem and Argument Shift”, Math. Notes, 86:1 (2009), 10–18
Zhou R., “Mixed hierarchy of soliton equations”, Journal of Mathematical Physics, 50:12 (2009), 123502