Abstract:
We introduce a decorated configuration space $\mathscr{C}\!\mathrm{onf}_n^\times(a)$ with a potential function $\mathcal{W}$. We prove the cluster duality conjecture of Fock–Goncharov for Grassmannians, that is, the tropicalization of $\big(\mathscr{C}\!\mathrm{onf}_n^\times(a), \mathcal{W}\big)$ canonically parametrizes a linear basis of the homogeneous coordinate ring of the Grassmannian $\operatorname{Gr}_a(n)$ with respect to the Plücker embedding. We prove that $\big(\mathscr{C}\!\mathrm{onf}_n^\times(a), \mathcal{W}\big)$ is equivalent to the mirror Landau–Ginzburg model of the Grassmannian considered by Eguchi–Hori–Xiong, Marsh–Rietsch and Rietsch–Williams. As an application, we show a cyclic sieving phenomenon involving plane partitions under a sequence of piecewise-linear toggles.
This publication is cited in the following 8 articles:
Roger Casals, Daping Weng, “Microlocal theory of Legendrian links and cluster algebras”, Geom. Topol., 28:2 (2024), 901
Sam Hopkins, Proceedings of Symposia in Pure Mathematics, 110, Open Problems in Algebraic Combinatorics, 2024, 135
Peigen Cao, Bernhard Keller, Fan Qin, “The valuation pairing on an upper cluster algebra”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2023
Casals R., Gao H., “Infinitely Many Lagrangian Fillings”, Ann. Math., 195:1 (2022), 207–249
E. N. Stucky, “Parity-unimodality and a cyclic sieving phenomenon for necklaces”, SIAM Discret. Math., 35:3 (2021), 2049–2069
P. Alexandersson, E. K. Oguz, S. Linusson, “Promotion and cyclic sieving on families of SSYT”, Ark. Mat., 59:2 (2021), 247–274
Linhui Shen, Daping Weng, “Cluster Structures on Double Bott–Samelson Cells”, Forum of Mathematics, Sigma, 9 (2021)
Sam Hopkins, “Cyclic Sieving for Plane Partitions and Symmetry”, SIGMA, 16 (2020), 130, 40 pp.