Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 068, 6 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.068
(Mi sigma1605)
 

Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces

Yukai Suna, Xianzhe Daib

a School of Mathematical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. of China
b Department of Mathematics, UCSB, Santa Barbara CA 93106, USA
References:
Abstract: Gromov asked if the bi-invariant metrics on a compact Lie group are extremal compared to any other metrics. In this note, we prove that the bi-invariant metrics on a compact connected semi-simple Lie group $G$ are extremal (in fact rigid) in the sense of Gromov when compared to the left-invariant metrics. In fact the same result holds for a compact connected homogeneous manifold $G/H$ with $G$ compact connect and semi-simple.
Keywords: extremal/rigid metrics, Lie groups, homogeneous spaces, scalar curvature.
Funding agency Grant number
National Natural Science Foundation of China
Simons Foundation
This research is partially supported by NSFC (Y.S.) and the Simons Foundation (X.D.).
Received: May 4, 2020; in final form July 22, 2020; Published online July 25, 2020
Bibliographic databases:
Document Type: Article
MSC: 53C20, 53C24, 53C30
Language: English
Citation: Yukai Sun, Xianzhe Dai, “Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces”, SIGMA, 16 (2020), 068, 6 pp.
Citation in format AMSBIB
\Bibitem{SunDai20}
\by Yukai~Sun, Xianzhe~Dai
\paper Gromov Rigidity of Bi-Invariant Metrics on Lie Groups and Homogeneous Spaces
\jour SIGMA
\yr 2020
\vol 16
\papernumber 068
\totalpages 6
\mathnet{http://mi.mathnet.ru/sigma1605}
\crossref{https://doi.org/10.3842/SIGMA.2020.068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000554994300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090620651}
Linking options:
  • https://www.mathnet.ru/eng/sigma1605
  • https://www.mathnet.ru/eng/sigma/v16/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :20
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024