Abstract:
In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are$(n-1)$-dimensional Bartnik data$\big(\Sigma_i ^{n-1}, \gamma_i, H_i\big)$, $i=1,2$, NNSC-cobordant? (i.e., there is an $n$-dimensional compact Riemannian manifold $\big(\Omega^n, g\big)$ with scalar curvature $R(g)\geq 0$ and the boundary $\partial \Omega=\Sigma_{1} \cup \Sigma_{2}$ such that $\gamma_i$ is the metric on $\Sigma_i ^{n-1}$ induced by $g$, and $H_i$ is the mean curvature of $\Sigma_i$ in $\big(\Omega^n, g\big)$). If $\big(\mathbb{S}^{n-1},\gamma_{\rm std},0\big)$ is positive scalar curvature (PSC) cobordant to $\big(\Sigma_1 ^{n-1}, \gamma_1, H_1\big)$, where $\big(\mathbb{S}^{n-1}, \gamma_{\rm std}\big)$ denotes the standard round unit sphere then $\big(\Sigma_1 ^{n-1}, \gamma_1, H_1\big)$ admits an NNSC fill-in. Just as Gromov's conjecture is connected with positive mass theorem, our problems are connected with Penrose inequality, at least in the case of $n=3$. Our third problem is on $\Lambda\big(\Sigma^{n-1}, \gamma\big)$ defined below.
\Bibitem{HuShi20}
\by Xue~Hu, Yuguang~Shi
\paper NNSC-Cobordism of Bartnik Data in High Dimensions
\jour SIGMA
\yr 2020
\vol 16
\papernumber 030
\totalpages 5
\mathnet{http://mi.mathnet.ru/sigma1567}
\crossref{https://doi.org/10.3842/SIGMA.2020.030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528032700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084817379}
Linking options:
https://www.mathnet.ru/eng/sigma1567
https://www.mathnet.ru/eng/sigma/v16/p30
This publication is cited in the following 3 articles:
Yuguang Shi, Wenlong Wang, Guodong Wei, “Total mean curvature of the boundary and nonnegative scalar curvature fill-ins”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2022:784 (2022), 215
Liu W., “A Matter of Time: Publication Dates in Web of Science Core Collection”, Scientometrics, 126:1 (2021), 849–857
Bo L., Shi Yu., “Nonexistence of the Nnsc-Cobordism of Bartnik Data”, Sci. China-Math., 64:7 (2021), 1357–1372