Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 030, 5 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.030
(Mi sigma1567)
 

This article is cited in 3 scientific papers (total in 3 papers)

NNSC-Cobordism of Bartnik Data in High Dimensions

Xue Hua, Yuguang Shib

a Department of Mathematics, College of Information Science and Technology, Jinan University, Guangzhou, 510632, P.R. China
b Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China
Full-text PDF (297 kB) Citations (3)
References:
Abstract: In this short note, we formulate three problems relating to nonnegative scalar curvature (NNSC) fill-ins. Loosely speaking, the first two problems focus on: When are $(n-1)$-dimensional Bartnik data $\big(\Sigma_i ^{n-1}, \gamma_i, H_i\big)$, $i=1,2$, NNSC-cobordant? (i.e., there is an $n$-dimensional compact Riemannian manifold $\big(\Omega^n, g\big)$ with scalar curvature $R(g)\geq 0$ and the boundary $\partial \Omega=\Sigma_{1} \cup \Sigma_{2}$ such that $\gamma_i$ is the metric on $\Sigma_i ^{n-1}$ induced by $g$, and $H_i$ is the mean curvature of $\Sigma_i$ in $\big(\Omega^n, g\big)$). If $\big(\mathbb{S}^{n-1},\gamma_{\rm std},0\big)$ is positive scalar curvature (PSC) cobordant to $\big(\Sigma_1 ^{n-1}, \gamma_1, H_1\big)$, where $\big(\mathbb{S}^{n-1}, \gamma_{\rm std}\big)$ denotes the standard round unit sphere then $\big(\Sigma_1 ^{n-1}, \gamma_1, H_1\big)$ admits an NNSC fill-in. Just as Gromov's conjecture is connected with positive mass theorem, our problems are connected with Penrose inequality, at least in the case of $n=3$. Our third problem is on $\Lambda\big(\Sigma^{n-1}, \gamma\big)$ defined below.
Keywords: scalar curvature, NNSC-cobordism, quasi-local mass, fill-ins.
Funding agency Grant number
National Natural Science Foundation of China 11701215
11671015
11731001
The research of the first and the second author was partially supported by NSFC 11701215, NSFC 11671015 and 11731001 respectively.
Received: January 22, 2020; in final form April 13, 2020; Published online April 20, 2020
Bibliographic databases:
Document Type: Article
MSC: 53C20, 83C99
Language: English
Citation: Xue Hu, Yuguang Shi, “NNSC-Cobordism of Bartnik Data in High Dimensions”, SIGMA, 16 (2020), 030, 5 pp.
Citation in format AMSBIB
\Bibitem{HuShi20}
\by Xue~Hu, Yuguang~Shi
\paper NNSC-Cobordism of Bartnik Data in High Dimensions
\jour SIGMA
\yr 2020
\vol 16
\papernumber 030
\totalpages 5
\mathnet{http://mi.mathnet.ru/sigma1567}
\crossref{https://doi.org/10.3842/SIGMA.2020.030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528032700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084817379}
Linking options:
  • https://www.mathnet.ru/eng/sigma1567
  • https://www.mathnet.ru/eng/sigma/v16/p30
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :21
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024