Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2020, Volume 16, 031, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2020.031
(Mi sigma1568)
 

This article is cited in 2 scientific papers (total in 2 papers)

Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch–Riemann–Roch in Genus 0

Alexander Givental

Department of Mathematics, UC Berkeley, CA 94720, USA
Full-text PDF (501 kB) Citations (2)
References:
Abstract: We extract genus 0 consequences of the all genera quantum HRR formula proved in Part IX. This includes re-proving and generalizing the adelic characterization of genus 0 quantum K-theory found in [Givental A., Tonita V., in Symplectic, Poisson, and Noncommutative Geometry, Math. Sci. Res. Inst. Publ., Vol. 62, Cambridge University Press, New York, 2014, 43–91]. Extending some results of Part VIII, we derive the invariance of a certain variety (the “big J-function”), constructed from the genus 0 descendant potential of permutation-equivariant quantum K-theory, under the action of certain finite difference operators in Novikov's variables, apply this to reconstructing the whole variety from one point on it, and give an explicit description of it in the case of the point target space.
Keywords: Gromov–Witten invariants, K-theory, adelic characterization.
Funding agency Grant number
National Science Foundation DMS-1611839
This material is based upon work supported by the National Science Foundation under Grant DMS-1611839, by the IBS Center for Geometry and Physics, POSTECH, Korea, and by IHES, France.
Received: September 28, 2019; in final form April 13, 2020; Published online April 22, 2020
Bibliographic databases:
Document Type: Article
MSC: 14N35
Language: English
Citation: Alexander Givental, “Permutation-Equivariant Quantum K-Theory X. Quantum Hirzebruch–Riemann–Roch in Genus 0”, SIGMA, 16 (2020), 031, 16 pp.
Citation in format AMSBIB
\Bibitem{Giv20}
\by Alexander~Givental
\paper Permutation-Equivariant Quantum K-Theory~X. Quantum Hirzebruch--Riemann--Roch in Genus~0
\jour SIGMA
\yr 2020
\vol 16
\papernumber 031
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma1568}
\crossref{https://doi.org/10.3842/SIGMA.2020.031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528033000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084815721}
Linking options:
  • https://www.mathnet.ru/eng/sigma1568
  • https://www.mathnet.ru/eng/sigma/v16/p31
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :34
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024