Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 024, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.024
(Mi sigma1323)
 

This article is cited in 6 scientific papers (total in 6 papers)

Fourier Series of Gegenbauer–Sobolev Polynomials

Óscar Ciaurri, Judit Mínguez

Departamento de Matemáticas y Computación, Universidad de La Rioja, 26006 Logroño, Spain
Full-text PDF (313 kB) Citations (6)
References:
Abstract: We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators.
Keywords: Sobolev-type inner product; Sobolev polynomials; Gegenbauer polynomials; partial sum operator.
Funding agency Grant number
Ministerio de Economía y Competitividad de España MTM2015-65888-C04-4-P
The authors were supported by grant MTM2015-65888-C04-4-P from Spanish Government.
Received: January 19, 2018; in final form March 13, 2018; Published online March 17, 2018
Bibliographic databases:
Document Type: Article
MSC: 42A20; 33C47
Language: English
Citation: Óscar Ciaurri, Judit Mínguez, “Fourier Series of Gegenbauer–Sobolev Polynomials”, SIGMA, 14 (2018), 024, 11 pp.
Citation in format AMSBIB
\Bibitem{CiaMin18}
\by \'Oscar~Ciaurri, Judit~M{\'\i}nguez
\paper Fourier Series of Gegenbauer--Sobolev Polynomials
\jour SIGMA
\yr 2018
\vol 14
\papernumber 024
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma1323}
\crossref{https://doi.org/10.3842/SIGMA.2018.024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428339100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045027410}
Linking options:
  • https://www.mathnet.ru/eng/sigma1323
  • https://www.mathnet.ru/eng/sigma/v14/p24
  • This publication is cited in the following 6 articles:
    1. R. M. Gadzhimirzaev, “Estimates for the Convergence Rate of a Fourier Series in Laguerre–Sobolev Polynomials”, Sib Math J, 65:4 (2024), 751  crossref
    2. M. G. Magomed-Kasumov, “Weighted Sobolev Orthogonal Systems with Two Discrete Points and Fourier Series with Respect to Them”, Russ Math., 68:11 (2024), 29  crossref
    3. M. G. Magomed-Kasumov, “The uniform convergence of Fourier series in a system of polynomials orthogonal in the sense of Sobolev and associated to Jacobi polynomials”, Siberian Math. J., 64:2 (2023), 338–346  mathnet  mathnet  crossref  crossref
    4. B. P. Osilenker, “On multipliers for Fourier series in Sobolev orthogonal polynomials”, Sb. Math., 213:8 (2022), 1058–1095  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. O. Ciaurri, J. Minguez Ceniceros, “Fourier series for coherent pairs of Jacobi measures”, Integral Transform. Spec. Funct., 32:5-8, SI (2021), 437–457  crossref  mathscinet  isi  scopus
    6. O. Ciaurri, J. Minguez Ceniceros, “Fourier series of Jacobi-Sobolev polynomials”, Integral Transform. Spec. Funct., 30:4 (2019), 334–346  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :43
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025