Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2018, Volume 14, 025, 44 pp.
DOI: https://doi.org/10.3842/SIGMA.2018.025
(Mi sigma1324)
 

This article is cited in 3 scientific papers (total in 3 papers)

Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems

Gaurav Bhatnagar, Michael J. Schlosser

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
Full-text PDF (645 kB) Citations (3)
References:
Abstract: We list $A_n$, $C_n$ and $D_n$ extensions of the elliptic WP Bailey transform and lemma, given for $n=1$ by Andrews and Spiridonov. Our work requires multiple series extensions of Frenkel and Turaev's terminating, balanced and very-well-poised ${}_{10}V_9$ elliptic hypergeometric summation formula due to Rosengren, and Rosengren and Schlosser. In our study, we discover two new $A_n$ ${}_{12}V_{11}$ transformation formulas, that reduce to two new $A_n$ extensions of Bailey's $_{10}\phi_9$ transformation formulas when the nome $p$ is $0$, and two multiple series extensions of Frenkel and Turaev's sum.
Keywords: $A_n$ elliptic and basic hypergeometric series; elliptic and basic hypergeometric series on root systems; well-poised Bailey transform and lemma.
Funding agency Grant number
Austrian Science Fund F50-N15
Finally, research of both authors was supported by a grant of the Austrian Science Fund (FWF): F50-N15.
Received: September 1, 2017; in final form March 13, 2018; Published online March 22, 2018
Bibliographic databases:
Document Type: Article
MSC: 33D67
Language: English
Citation: Gaurav Bhatnagar, Michael J. Schlosser, “Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems”, SIGMA, 14 (2018), 025, 44 pp.
Citation in format AMSBIB
\Bibitem{BhaSch18}
\by Gaurav~Bhatnagar, Michael~J.~Schlosser
\paper Elliptic Well-Poised Bailey Transforms and Lemmas on Root Systems
\jour SIGMA
\yr 2018
\vol 14
\papernumber 025
\totalpages 44
\mathnet{http://mi.mathnet.ru/sigma1324}
\crossref{https://doi.org/10.3842/SIGMA.2018.025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428339600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045026429}
Linking options:
  • https://www.mathnet.ru/eng/sigma1324
  • https://www.mathnet.ru/eng/sigma/v14/p25
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :101
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024