Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 024, 4 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.024
(Mi sigma1106)
 

This article is cited in 1 scientific paper (total in 1 paper)

Nijenhuis Integrability for Killing Tensors

Konrad Schöbel

Mathematisches Institut, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany
Full-text PDF (247 kB) Citations (1)
References:
Abstract: The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton–Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for a Killing tensor the third and most complicated of these equations is redundant. This considerably simplifies the classification of orthogonal separation coordinates on arbitrary (pseudo-)Riemannian manifolds.
Keywords: integrable systems; separation of variables; Killing tensors; Nijenhuis tensor; Haantjes tensor.
Received: October 30, 2015; in final form February 26, 2016; Published online March 7, 2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Konrad Schöbel, “Nijenhuis Integrability for Killing Tensors”, SIGMA, 12 (2016), 024, 4 pp.
Citation in format AMSBIB
\Bibitem{Sch16}
\by Konrad~Sch\"obel
\paper Nijenhuis Integrability for Killing Tensors
\jour SIGMA
\yr 2016
\vol 12
\papernumber 024
\totalpages 4
\mathnet{http://mi.mathnet.ru/sigma1106}
\crossref{https://doi.org/10.3842/SIGMA.2016.024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371330900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960433471}
Linking options:
  • https://www.mathnet.ru/eng/sigma1106
  • https://www.mathnet.ru/eng/sigma/v12/p24
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :33
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024