|
This article is cited in 8 scientific papers (total in 8 papers)
Haantjes Structures for the Jacobi–Calogero Model and the Benenti Systems
Giorgio Tondoa, Piergiulio Tempestabc a Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, piaz.le Europa 1, I–34127 Trieste, Italy
b Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/Nicolás Cabrera, No 13–15, 28049 Madrid, Spain
c Departamento de Física Teórica II, Facultad de Físicas, Universidad Complutense, 28040 – Madrid, Spain
Abstract:
In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stäckel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles and for the Benenti systems.
Keywords:
Haantjes tensor; symplectic-Haantjes manifolds; Stäckel systems; quasi-bi-Hamiltonian systems; Benenti systems.
Received: November 3, 2015; in final form February 22, 2016; Published online March 3, 2016
Citation:
Giorgio Tondo, Piergiulio Tempesta, “Haantjes Structures for the Jacobi–Calogero Model and the Benenti Systems”, SIGMA, 12 (2016), 023, 18 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1105 https://www.mathnet.ru/eng/sigma/v12/p23
|
Statistics & downloads: |
Abstract page: | 206 | Full-text PDF : | 42 | References: | 51 |
|