Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2016, Volume 12, 023, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2016.023
(Mi sigma1105)
 

This article is cited in 8 scientific papers (total in 8 papers)

Haantjes Structures for the Jacobi–Calogero Model and the Benenti Systems

Giorgio Tondoa, Piergiulio Tempestabc

a Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, piaz.le Europa 1, I–34127 Trieste, Italy
b Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/Nicolás Cabrera, No 13–15, 28049 Madrid, Spain
c Departamento de Física Teórica II, Facultad de Físicas, Universidad Complutense, 28040 – Madrid, Spain
Full-text PDF (463 kB) Citations (8)
References:
Abstract: In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stäckel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles and for the Benenti systems.
Keywords: Haantjes tensor; symplectic-Haantjes manifolds; Stäckel systems; quasi-bi-Hamiltonian systems; Benenti systems.
Funding agency Grant number
Ministerio de Economía y Competitividad de España FIS2015-63966
SEV-2015-0554
The work of P.T. has been partly supported by the research project FIS2015-63966, MINECO, Spain and partly by ICMAT Severo Ochoa project SEV-2015-0554 (MINECO). G.T. acknowledges the financial support of the research project PRIN 2010-11 “Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions”.
Received: November 3, 2015; in final form February 22, 2016; Published online March 3, 2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Giorgio Tondo, Piergiulio Tempesta, “Haantjes Structures for the Jacobi–Calogero Model and the Benenti Systems”, SIGMA, 12 (2016), 023, 18 pp.
Citation in format AMSBIB
\Bibitem{TonTem16}
\by Giorgio~Tondo, Piergiulio~Tempesta
\paper Haantjes Structures for the Jacobi--Calogero Model and the Benenti Systems
\jour SIGMA
\yr 2016
\vol 12
\papernumber 023
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1105}
\crossref{https://doi.org/10.3842/SIGMA.2016.023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371330800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960118966}
Linking options:
  • https://www.mathnet.ru/eng/sigma1105
  • https://www.mathnet.ru/eng/sigma/v12/p23
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :42
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024