Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 3, Pages 552–554
DOI: https://doi.org/10.1070/RM9999
(Mi rm9999)
 

Brief Communications

Roots of the characteristic equation for the symplectic groupoid

L. O. Chekhovabc, M. Z. Shapirocb, H. Shibod

a Steklov Mathematical Institute of Russian Academy of Sciences
b National Research University Higher School of Economics
c Michigan State University, East Lansing, USA
d Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
References:
Funding agency Grant number
National Science Foundation DMS-1702115
Ministry of Science and Higher Education of the Russian Federation 075-15-2021-608
M. S. was supported by NSF grant DMS-1702115; L. Ch. and M. S. were supported by the International Laboratory of Cluster Geometry of HSE University, RF Government grant (ag. no. 075-15-2021-608 of 08.JUN.21). H. Sh. thanks the Department of Mathematics of Michigan State University and the exchange program “Discover America” for their support and stimulating research atmosphere during his visit to MSU where the main part of the work was accomplished.
Received: 17.03.2022
Russian version:
Uspekhi Matematicheskikh Nauk, 2022, Volume 77, Issue 3(465), Pages 177–178
DOI: https://doi.org/10.4213/rm9999
Bibliographic databases:
Document Type: Article
MSC: Primary 15A24; Secondary 16T20
Language: English
Original paper language: Russian

Morphisms on the set $\mathcal A_n\subseteq \operatorname{gl}_n$ of unipotent upper-triangular $ n\times n $ matrices are transformations $\mathbb A\mapsto B\mathbb AB^\top\in \mathcal A_n$. For $B=e^{\varepsilon g}$ linearized transformations $\delta_\varepsilon \mathbb A=g\mathbb A+\mathbb Ag^\top$ are analogous to Krichever–Novikov transformations [4]. The quantization of the Bondal Poisson structure on $\mathcal A_n$ (see [1]) obtained using the symplectic groupoid construction is the reflection equation with trigonometric $R$-matrix

$$ \begin{equation} {\mathcal R}_{n}(q)\overset{1}{\mathbb A} {\mathcal R}_{n}^{t_1}(q)\overset{2}{\mathbb A}= \overset{2}{\mathbb A}{\mathcal R}_{n}^{t_1}(q) \overset{1}{\mathbb A}{\mathcal R}_{n}(q). \end{equation} \tag{1} $$
Here $\mathbb A$ is an upper-triangular metric with diagonal entries $q^{-1/2}$ and self-adjoint operator entries $a_{i,j}$ for $i<j$. Then the combination $\mathbb A\mathbb A^{-\unicode{8224}}:=\mathbb A[\mathbb A^{\unicode{8224}}]^{-1}$ undergoes an adjoint transformation $\mathbb A\mathbb A^{-\unicode{8224}}\mapsto B \mathbb A\mathbb A^{-\unicode{8224}} B^{-1}$, and we are to find its eigenvalues $\lambda_i\in\mathbb C$ determining $[n/2]$ independent Casimir elements [1].

We express the entries of $\mathbb A$ using the quantum Fock–Goncharov variables $Z_\alpha=Z_{(i,j,k)}$ parameterized in terms of the barycentric coordinates ($i+j+k=n$) of the vertices of the $b_n$-quiver [3] (Fig. 1, left): a solid arrow from $\alpha$ to $\beta$ means that $Z_{\beta}Z_{\alpha}=q^{-2} Z_{\alpha}Z_{\beta}$, and a dashed arrow gives $Z_{\beta}Z_{\alpha}=q^{-1} Z_{\alpha}Z_{\beta}$. The directed network $N$ dual to the $b_n$-quiver is the directed graph of double arrows in Fig. 1.

With any oriented path $P\colon j \rightsquigarrow i$ in any planar directed network $\mathcal N$ we associate the quantum weight $w(P)$, which is the Weyl ordered (denoted by the symbol ; see [2]) product of the variables $Z_\alpha$ of all faces of $\mathcal N$ lying to the right of the path.

In the case of the $b_n$-quiver we define the three quantum $(n\times n)$-transport matrices

$$ \begin{equation*} \begin{gathered} \, (\mathcal M_1)_{i,j}= \sum_{\substack{P\colon j\rightsquigarrow i'}} w(P),\quad (\mathcal M_2)_{i,j}= \sum_{\substack{P\colon j\rightsquigarrow i'' }} w(P), \quad (\mathcal M_3)_{i,j}= \sum_{\substack{P\colon j' \rightsquigarrow i'' }} w(P), \end{gathered} \end{equation*} \notag $$
where the paths contributing to $\mathcal M_3$ are obtained by reversing all horizontal double arrows in $N$. Note that ${\mathcal M}_1$ and $\mathcal M_3$ are lower-triangular matrices and ${\mathcal M}_2$ is an upper-triangular matrix. We define an antidiagonal matrix
$$ \begin{equation*} S=\sum_{i=1}^n (-1)^{i+1}q^{-i+1/2}e_{i,n+1-i} \end{equation*} \notag $$
and let denote the products of Fock–Goncharov variables along SE-diagonals of the $b_n$-quiver.

We have the groupoid condition [2] ${\mathcal M}_3 S {\mathcal M}_1= {\mathcal M}_2$, and Theorem 4.1 of [2] states that $\mathbb A:=\mathcal M_1^\top\mathcal M_3 S \mathcal M_1$ satisfies equation (1). Amalgamating the variables $Z_{(i,0,n-i)}$ and $Z_{(0,n-i,i)}$ pairwise we obtain the new Casimirs

used to eliminate the variables $Z_{(l,n-l,0)}$, so that we obtain the $\mathcal A_n$-quiver (Fig. 1, right), whose Casimirs are the $[n/2]$ elements for $1\leqslant i<n/2$ and $C_{n/2}=T_{n/2}$ for integer $n/2$.

Theorem. The eigenvalues $\lambda_i\in \mathbb C$, $1\leqslant i\leqslant n$, of the operator $\mathbb A\mathbb A^{-\unicode{8224}}$ are

$$ \begin{equation*} \lambda_i=(-1)^{n-1} q^{-n}\times \begin{cases} \prod\limits_{k=i}^{[n/2]} C_k&\textit{for}\ 1\leqslant i\leqslant [n/2]; \\ 1\hphantom{\sum\limits^\sum} &\textit{for } i=(n+1)/2 \textit{ for odd } n; \\ \prod\limits_{k=n+1-i}^{[n/2]}C_k^{-1}&\textit{for}\ n-[n/2]+1\leqslant i \leqslant n. \end{cases} \end{equation*} \notag $$

Proof. For $\mathbb A=\mathcal M_1^\top\!\mathcal M_3 S \mathcal M_1$ we have $\mathcal M_i^\unicode{8224}=\mathcal M_i^\top$ and $\mathbb A^{\unicode{8224}}\!= \mathcal M_1^\top S^+\! \mathcal M_3^\top \mathcal M_1$, so that $\mathbb A-\lambda \mathbb A^{\unicode{8224}}= \mathcal M_1^\top\bigl(\mathcal M_3S- \lambda S^+ \mathcal M_3^\top\bigr)\mathcal M_1$, and the singularity equation becomes $\bigl(\mathcal M_3S- \lambda S^+ \mathcal M_3^\top\bigr)\psi=0$. The matrix $\mathcal M_3$ is lower triangular and its diagonal entries are $ m_1=Z_{(n,0,0)}$ and , $2\leqslant i \leqslant n$. The crucial observation is that both the matrices $\mathcal M_3S$ and $S^+\mathcal M_3^\top$ are upper antitriangular. The antidiagonal components of these matrices are
$$ \begin{equation*} \sum_{i=1}^n (-1)^{i+1}q^{i-1/2} m_i e_{n+1-i,i}\quad \text{and}\quad \sum_{i=1}^n (-1)^{n-i}q^{-n+i-1/2} m_{n+1-i} e_{n+1-i,i}, \end{equation*} \notag $$
respectively, and the singularity equation has a non-trivial solution if a combination of them contains the zero element, so that the admissible values are $\lambda_i=(-1)^{n-1}q^{-n} m_{n+1-i}/m_i$; the quotients of variables correspond to different cases in the theorem. $\Box$

Bibliography

1. A. I. Bondal, Izv. Ross. Akad. Nauk Ser. Mat., 68:4 (2004), 19–74  mathnet  crossref  mathscinet  zmath; English transl. in Izv. Math., 68:4 (2004), 659–708  crossref
2. L. O. Chekhov and M. Shapiro, “Log-canonical coordinates for symplectic groupoid and cluster algebras”, IMRN (to appear)  crossref
3. V. Fock and A. Goncharov, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211  crossref  mathscinet  zmath
4. I. M. Krichever and S. P. Novikov, Uspekhi Mat. Nauk, 54:6(330) (1999), 149–150  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surv., 54:6 (1999), 1248–1249  crossref  adsnasa

Citation: L. O. Chekhov, M. Z. Shapiro, H. Shibo, “Roots of the characteristic equation for the symplectic groupoid”, Uspekhi Mat. Nauk, 77:3(465) (2022), 177–178; Russian Math. Surveys, 77:3 (2022), 552–554
Citation in format AMSBIB
\Bibitem{CheShaShi22}
\by L.~O.~Chekhov, M.~Z.~Shapiro, H.~Shibo
\paper Roots of the characteristic equation for the symplectic groupoid
\jour Uspekhi Mat. Nauk
\yr 2022
\vol 77
\issue 3(465)
\pages 177--178
\mathnet{http://mi.mathnet.ru/rm9999}
\crossref{https://doi.org/10.4213/rm9999}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461381}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77..552C}
\transl
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 3
\pages 552--554
\crossref{https://doi.org/10.1070/RM9999}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992284200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85167414129}
Linking options:
  • https://www.mathnet.ru/eng/rm9999
  • https://doi.org/10.1070/RM9999
  • https://www.mathnet.ru/eng/rm/v77/i3/p177
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:283
    Russian version PDF:28
    English version PDF:33
    Russian version HTML:117
    English version HTML:81
    References:43
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024