Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2021, Volume 76, Issue 5, Pages 821–881
DOI: https://doi.org/10.1070/RM9998
(Mi rm9998)
 

This article is cited in 7 scientific papers (total in 7 papers)

One-dimensional dynamical systems

L. S. Efremovaab, E. N. Makhrovaa

a Lobachevsky State University of Nizhny Novgorod
b Moscow Institute of Physics and Technology
References:
Abstract: The survey is devoted to the topological dynamics of maps defined on one-dimensional continua such as a closed interval, a circle, finite graphs (for instance, finite trees), or dendrites (locally connected continua without subsets homeomorphic to a circle). Connections between the periodic behaviour of trajectories, the existence of a horseshoe and homoclinic trajectories, and the positivity of topological entropy are investigated. Necessary and sufficient conditions for entropy chaos in continuous maps of an interval, a circle, or a finite graph, and sufficient conditions for entropy chaos in continuous maps of dendrites are presented. Reasons for similarities and differences between the properties of maps defined on the continua under consideration are analyzed. Extensions of Sharkovsky's theorem to certain discontinuous maps of a line or an interval and continuous maps on a plane are considered.
Bibliography: 207 titles.
Keywords: one-dimensional continuum, degree of a circle map, rotation set, finite graph, dendrite, periodic point, homoclinic point, horseshoe, topological entropy.
Received: 23.02.2021
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37B45, 37E05, 37E10, 37E25, 37E99; Secondary 37B40, 37E45
Language: English
Original paper language: Russian
Citation: L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Russian Math. Surveys, 76:5 (2021), 821–881
Citation in format AMSBIB
\Bibitem{EfrMak21}
\by L.~S.~Efremova, E.~N.~Makhrova
\paper One-dimensional dynamical systems
\jour Russian Math. Surveys
\yr 2021
\vol 76
\issue 5
\pages 821--881
\mathnet{http://mi.mathnet.ru//eng/rm9998}
\crossref{https://doi.org/10.1070/RM9998}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4324042}
\zmath{https://zbmath.org/?q=an:1496.37015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000738251900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85117592862}
Linking options:
  • https://www.mathnet.ru/eng/rm9998
  • https://doi.org/10.1070/RM9998
  • https://www.mathnet.ru/eng/rm/v76/i5/p81
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:854
    Russian version PDF:303
    English version PDF:129
    Russian version HTML:267
    References:136
    First page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024