Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2021, Volume 76, Issue 3, Pages 379–387
DOI: https://doi.org/10.1070/RM9991
(Mi rm9991)
 

Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture

A. I. Aptekarev

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
References:
Abstract: Results due to Keldysh on the convergence of Bieberbach polynomials and the density of polynomials in spaces of analytic functions are considered. Their further development and relevance in the contemporary context of constructive complex analysis are discussed. Particular focus is placed on Mergelyan's conjecture on the rate of convergence in a domain with smooth boundary, which is still open.
Bibliography: 20 titles.
Keywords: Bieberbach polynomials; extremal properties of analytic functions; approximate conformal mappings; completeness of polynomials; orthogonal polynomials with respect to the area.
Received: 27.12.2020
Russian version:
Uspekhi Matematicheskikh Nauk, 2021, Volume 76, Issue 3(459), Pages 3–12
DOI: https://doi.org/10.4213/rm9991
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 01A70, 30B60, 30C35
Language: English
Original paper language: Russian
Citation: A. I. Aptekarev, “Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture”, Uspekhi Mat. Nauk, 76:3(459) (2021), 3–12; Russian Math. Surveys, 76:3 (2021), 379–387
Citation in format AMSBIB
\Bibitem{Apt21}
\by A.~I.~Aptekarev
\paper Convergence of Bieberbach polynomials: Keldysh's theorems and Mergelyan's conjecture
\jour Uspekhi Mat. Nauk
\yr 2021
\vol 76
\issue 3(459)
\pages 3--12
\mathnet{http://mi.mathnet.ru/rm9991}
\crossref{https://doi.org/10.4213/rm9991}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4265396}
\zmath{https://zbmath.org/?q=an:1476.30137}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021RuMaS..76..379A}
\elib{https://elibrary.ru/item.asp?id=47067729}
\transl
\jour Russian Math. Surveys
\yr 2021
\vol 76
\issue 3
\pages 379--387
\crossref{https://doi.org/10.1070/RM9991}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000691283600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115013929}
Linking options:
  • https://www.mathnet.ru/eng/rm9991
  • https://doi.org/10.1070/RM9991
  • https://www.mathnet.ru/eng/rm/v76/i3/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:368
    Russian version PDF:84
    English version PDF:40
    Russian version HTML:119
    References:49
    First page:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024