Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2020, Volume 75, Issue 4, Pages 587–626
DOI: https://doi.org/10.1070/RM9957
(Mi rm9957)
 

This article is cited in 5 scientific papers (total in 5 papers)

Surveys

Spectral triangles of non-selfadjoint Hill and Dirac operators

P. B. Djakova, B. S. Mityaginb

a Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
b The Ohio State University, Columbus, OH, USA
References:
Abstract: This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill–Schrödinger and Dirac operators. Let $L$ be a Hill operator or a one-dimensional Dirac operator on the interval $[0,\pi]$. If $L$ is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large $|n|$, close to $n^2$ in the Hill case or close to $n$ in the Dirac case ($n\in \mathbb{Z}$). There is one Dirichlet eigenvalue $\mu_n$ and two periodic (if $n$ is even) or antiperiodic (if $n$ is odd) eigenvalues $\lambda_n^-$ and $\lambda_n^+$ (counted with multiplicity). Asymptotic estimates are given for the spectral gaps $\gamma_n=\lambda_n^+-\lambda_n^-$ and the deviations $\delta_n=\mu_n-\lambda_n^+$ in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for $\gamma_n$ and $\delta_n$ are found for special potentials that are trigonometric polynomials.
Bibliography: 45 titles.
Keywords: Hill operator, one-dimensional Dirac operator, periodic boundary conditions, antiperiodic boundary conditions, Dirichlet boundary conditions.
Funding agency
The second author thanks the Steklov Mathematical Institute of Russian Academy of Sciences for their help and support during his visit from September 16 to October 19, 2019, when the writing of this paper was at its final stage.
Received: 20.11.2019
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 47E05, 34L40, 34L10
Language: English
Original paper language: Russian
Citation: P. B. Djakov, B. S. Mityagin, “Spectral triangles of non-selfadjoint Hill and Dirac operators”, Russian Math. Surveys, 75:4 (2020), 587–626
Citation in format AMSBIB
\Bibitem{DjaMit20}
\by P.~B.~Djakov, B.~S.~Mityagin
\paper Spectral triangles of non-selfadjoint Hill and Dirac operators
\jour Russian Math. Surveys
\yr 2020
\vol 75
\issue 4
\pages 587--626
\mathnet{http://mi.mathnet.ru//eng/rm9957}
\crossref{https://doi.org/10.1070/RM9957}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153698}
\zmath{https://zbmath.org/?q=an:7281941}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020RuMaS..75..587D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000586805800001}
\elib{https://elibrary.ru/item.asp?id=45177747}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094937773}
Linking options:
  • https://www.mathnet.ru/eng/rm9957
  • https://doi.org/10.1070/RM9957
  • https://www.mathnet.ru/eng/rm/v75/i4/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024