Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2020, Volume 75, Issue 4, Pages 725–763
DOI: https://doi.org/10.1070/RM9901
(Mi rm9901)
 

This article is cited in 15 scientific papers (total in 15 papers)

Surveys

Geometry of Banach limits and their applications

E. M. Semenova, F. A. Sukochevb, A. S. Usachevac

a Voronezh State University
b School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
c Central South University, Changsha, China
References:
Abstract: A Banach limit is a positive shift-invariant functional on $\ell_\infty$ which extends the functional
$$ (x_1,x_2,\dots)\mapsto\lim_{n\to\infty}x_n $$
from the set of convergent sequences to $\ell_\infty$. The history of Banach limits has its origins in classical papers by Banach and Mazur. The set of Banach limits has interesting properties which are useful in applications. This survey describes the current state of the theory of Banach limits and of the areas in analysis where they have found applications.
Bibliography: 137 titles.
Keywords: Banach limits, invariant Banach limits, almost convergent sequences, extreme points, Cesàro operator, dilation operator, Stone–Čech compactification, singular trace of an operator, non-commutative geometry.
Funding agency Grant number
Russian Science Foundation 19-11-00197
Australian Research Council
The research of the first and third authors was supported by the Russian Science Foundation under grant no. 19-11-00197. The research of the second author was carried out with the support of the Australian Research Council.
Received: 03.07.2019
Russian version:
Uspekhi Matematicheskikh Nauk, 2020, Volume 75, Issue 4(454), Pages 153–194
DOI: https://doi.org/10.4213/rm9901
Bibliographic databases:
Document Type: Article
UDC: 517.982.22
MSC: Primary 46B20, 46B45; Secondary 46A22, 46L87, 47L20
Language: English
Original paper language: Russian
Citation: E. M. Semenov, F. A. Sukochev, A. S. Usachev, “Geometry of Banach limits and their applications”, Uspekhi Mat. Nauk, 75:4(454) (2020), 153–194; Russian Math. Surveys, 75:4 (2020), 725–763
Citation in format AMSBIB
\Bibitem{SemSukUsa20}
\by E.~M.~Semenov, F.~A.~Sukochev, A.~S.~Usachev
\paper Geometry of Banach limits and their applications
\jour Uspekhi Mat. Nauk
\yr 2020
\vol 75
\issue 4(454)
\pages 153--194
\mathnet{http://mi.mathnet.ru/rm9901}
\crossref{https://doi.org/10.4213/rm9901}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4191744}
\zmath{https://zbmath.org/?q=an:1464.46012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020RuMaS..75..725S}
\elib{https://elibrary.ru/item.asp?id=45177130}
\transl
\jour Russian Math. Surveys
\yr 2020
\vol 75
\issue 4
\pages 725--763
\crossref{https://doi.org/10.1070/RM9901}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000586814500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094974390}
Linking options:
  • https://www.mathnet.ru/eng/rm9901
  • https://doi.org/10.1070/RM9901
  • https://www.mathnet.ru/eng/rm/v75/i4/p153
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:679
    Russian version PDF:172
    English version PDF:122
    References:74
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024