Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2019, Volume 74, Issue 1, Pages 111–140
DOI: https://doi.org/10.1070/RM9866
(Mi rm9866)
 

This article is cited in 51 scientific papers (total in 51 papers)

Tensor invariants and integration of differential equations

V. V. Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: The connection between tensor invariants of systems of differential equations and explicit integration of them is discussed. A general result on the integrability of dynamical systems admitting a complete set of integral invariants in the sense of Cartan is proved. The existence of an invariant 1-form is related to the representability of the dynamical system in Hamiltonian form (with a symplectic structure which may be degenerate). This general idea is illustrated using an example of linear systems of differential equations. A general concept of flags of tensor invariants is introduced. General relations between the Kovalevskaya exponents of quasi-homogeneous systems of differential equations and flags of quasi-homogeneous tensor invariants having a certain structure are established. Results of a general nature are applied, in particular, to show that the general solution of the equations of rotation for a rigid body is branching in the Goryachev–Chaplygin case.
Bibliography: 50 titles.
Keywords: tensors, invariant forms and fields, flags, quasi-homogeneous systems, Kovalevskaya exponents, Goryachev–Chaplygin case.
Received: 30.11.2018
Bibliographic databases:
Document Type: Article
UDC: 517.9+531.01
MSC: Primary 58J70; Secondary 34A34, 70H05
Language: English
Original paper language: Russian
Citation: V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140
Citation in format AMSBIB
\Bibitem{Koz19}
\by V.~V.~Kozlov
\paper Tensor invariants and integration of differential equations
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 1
\pages 111--140
\mathnet{http://mi.mathnet.ru/eng/rm9866}
\crossref{https://doi.org/10.1070/RM9866}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920428}
\zmath{https://zbmath.org/?q=an:1439.37057}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..111K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000465431500003}
\elib{https://elibrary.ru/item.asp?id=37089794}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068319356}
Linking options:
  • https://www.mathnet.ru/eng/rm9866
  • https://doi.org/10.1070/RM9866
  • https://www.mathnet.ru/eng/rm/v74/i1/p117
  • This publication is cited in the following 51 articles:
    1. M. V. Shamolin, “Invarianty odnorodnykh dinamicheskikh sistem proizvolnogo nechetnogo poryadka s dissipatsiei. III. Sistemy sedmogo poryadka”, Materialy 6 Mezhdunarodnoi konferentsii «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (DYSC 2024). Irkutsk, 16–20 sentyabrya 2024 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 238, VINITI, M., 2025, 69–100  mathnet  crossref
    2. M. V. Shamolin, “Invarianty odnorodnykh dinamicheskikh sistem proizvolnogo nechetnogo poryadka s dissipatsiei. IV. Sistemy devyatogo poryadka”, Materialy 6 Mezhdunarodnoi konferentsii «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (DYSC 2024). Irkutsk, 16–20 sentyabrya 2024 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 239, VINITI, M., 2025, 62–97  mathnet  crossref
    3. M. V. Shamolin, “Invarianty odnorodnykh dinamicheskikh sistem proizvolnogo nechetnogo poryadka s dissipatsiei. V. Obschii sluchai”, Materialy 6 Mezhdunarodnoi konferentsii «Dinamicheskie sistemy i kompyuternye nauki: teoriya i prilozheniya» (DYSC 2024). Irkutsk, 16–20 sentyabrya 2024 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 240, VINITI, M., 2025, 49–89  mathnet  crossref
    4. A. V. Tsyganov, “O tenzornykh invariantakh dlya integriruemykh sluchaev dvizheniya tverdogo tela Eilera, Lagranzha i Kovalevskoi”, Izv. RAN. Ser. matem., 89:2 (2025), 161–188  mathnet  crossref
    5. A. V. Tsiganov, “On rotation invariant integrable systems”, Izv. Math., 88:2 (2024), 389–409  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. M. V. Shamolin, “Invariants of systems having a small number of degrees of freedom with dissipation”, Moscow University Mathematics Bulletin, 79:2 (2024), 71–84  mathnet  crossref  crossref  elib
    7. M. V Shamolin, “INVARIANTS OF GEODESIC, POTENTIAL AND DISSIPATIVE SYSTEMS WITH THREE DEGREES OF FREEDOM”, Differencialʹnye uravneniâ, 60:3 (2024), 322  crossref
    8. José F. Cariñena, “A Geometric Approach to the Sundman Transformation and Its Applications to Integrability”, Symmetry, 16:5 (2024), 568  crossref
    9. M. V. Shamolin, “Invariants of Seventh-Order Homogeneous Dynamical Systems with Dissipation”, Dokl. Math., 109:2 (2024), 152  crossref
    10. M. V. Shamolin, “Invariants of Geodesic, Potential, and Dissipative Systems with Three Degrees of Freedom”, Diff Equat, 60:3 (2024), 296  crossref
    11. Valery V. Kozlov, “Solvable Algebras and Integrable Systems”, Regul. Chaotic Dyn., 29:5 (2024), 717–727  mathnet  crossref
    12. M. V. Shamolin, “New Cases of Integrable Ninth-Order Conservative and Dissipative Dynamical Systems”, Dokl. Math., 2024  crossref
    13. M. V. Shamolin, “Invariants of seventh-order homogeneous dynamical systems with dissipation”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516 (2024), 65  crossref
    14. M. V. Shamolin, “New cases of integrable ninth-order conservative and dissipative dynamical systems”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 518:1 (2024), 51  crossref
    15. M. V. Shamolin, “Invarianty odnorodnykh dinamicheskikh sistem proizvolnogo nechetnogo poryadka s dissipatsiei. I. Sistemy tretego poryadka”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXV», Voronezh, 26-30 aprelya 2024 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 236, VINITI RAN, M., 2024, 72–88  mathnet  crossref
    16. M. V. Shamolin, “Invarianty odnorodnykh dinamicheskikh sistem proizvolnogo nechetnogo poryadka s dissipatsiei. II. Sistemy pyatogo poryadka”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXV», Voronezh, 26-30 aprelya 2024 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 237, VINITI RAN, M., 2024, 49–75  mathnet  crossref
    17. S. Motonaga, K. Yagasaki, “Obstructions to integrability of nearly integrable dynamical systems near regular level sets”, Arch. Rational. Mech. Anal., 247:3 (2023), 44  crossref  mathscinet
    18. M. V. Shamolin, “Invariant volume forms of geodesic, potential, and dissipative systems on a tangent bundle of a four-dimensional manifold”, Dokl. Math., 107:1 (2023), 57–63  mathnet  crossref  crossref  elib
    19. M. V. Shamolin, “Invariant forms of geodesic, potential, and dissipative systems on tangent bundles of finite-dimensional manifolds”, Dokl. Math., 108:1 (2023), 248–255  mathnet  crossref  crossref  elib
    20. M. V. Shamolin, “Tenzornye invarianty geodezicheskikh, potentsialnykh i dissipativnykh sistem. I. Sistemy na kasatelnykh rassloeniyakh dvumernykh mnogoobrazii”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 227, VINITI RAN, M., 2023, 100–128  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1218
    Russian version PDF:610
    English version PDF:126
    References:138
    First page:102
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025