Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2019, Volume 74, Issue 2, Pages 211–263
DOI: https://doi.org/10.1070/RM9863
(Mi rm9863)
 

This article is cited in 27 scientific papers (total in 27 papers)

The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes

P. G. Grinevicha, P. M. Santinibc

a Landau Institute for Theoretical Physics of the Russian Academy of Sciences
b Università di Roma "La Sapienza", Roma, Italy
c Istituto Nazionale di Fisica Nucleare (INFN), Roma, Italy
References:
Abstract: The focusing non-linear Schrödinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasimonochromatic waves in weakly non-linear media, and MI is considered to be the main physical mechanism for the appearance of anomalous (rogue) waves (AWs) in nature. In this paper the finite-gap method is used to study the NLS Cauchy problem for generic periodic initial perturbations of the unstable background solution of the NLS equation (here called the Cauchy problem of AWs) in the case of a finite number N of unstable modes. It is shown how the finite-gap method adapts to this specific Cauchy problem through three basic simplifications enabling one to construct the solution, to leading and relevant order, in terms of elementary functions of the initial data. More precisely, it is shown that, to leading order, i) the initial data generate a partition of the time axis into a sequence of finite intervals, ii) in each interval I of the partition only a subset of N(I)N unstable modes are ‘visible’, and iii) for tI the NLS solution is approximated by the N(I)-soliton solution of Akhmediev type describing for these ‘visible’ unstable modes a non-linear interaction with parameters also expressed in terms of the initial data through elementary functions. This result explains the relevance of the m-soliton solutions of Akhmediev type with mN in the generic periodic Cauchy problem of AWs in the case of a finite number N of unstable modes.
Bibliography: 118 titles.
Keywords: focusing non-linear Schrödinger equation, periodic Cauchy problem for anomalous waves, asymptotics in terms of elementary functions, finite-gap approximation, Riemann surfaces close to degenerate ones.
Funding agency Grant number
Russian Science Foundation 18-11-00316
Sapienza Università di Roma
The work of the first author was supported by the Russian Science Foundation, grant 18-11-00316. The second author was partially supported by the University “La Sapienza”, grant 2017.
Received: 08.11.2018
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: Primary 35Q55; Secondary 14H70, 14H81, 74J30, 78A60, 76B25, 76B15
Language: English
Original paper language: Russian
Citation: P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes”, Russian Math. Surveys, 74:2 (2019), 211–263
Citation in format AMSBIB
\Bibitem{GriSan19}
\by P.~G.~Grinevich, P.~M.~Santini
\paper The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 2
\pages 211--263
\mathnet{http://mi.mathnet.ru/eng/rm9863}
\crossref{https://doi.org/10.1070/RM9863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3951601}
\zmath{https://zbmath.org/?q=an:1454.35340}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..211G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000474710200002}
\elib{https://elibrary.ru/item.asp?id=37180591}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072721502}
Linking options:
  • https://www.mathnet.ru/eng/rm9863
  • https://doi.org/10.1070/RM9863
  • https://www.mathnet.ru/eng/rm/v74/i2/p27
  • This publication is cited in the following 27 articles:
    1. Fang‐Cheng Fan, Wang Tang, Guo‐Fu Yu, “Breather and Rogue Wave Solutions on the Different Periodic Backgrounds in the Focusing Nonlinear Schrödinger Equation”, Stud Appl Math, 154:2 (2025)  crossref
    2. F Coppini, P M Santini, “The effect of loss/gain and Hamiltonian perturbations of the Ablowitz—Ladik lattice on the recurrence of periodic anomalous waves”, J. Phys. A: Math. Theor., 57:7 (2024), 075701  crossref  mathscinet
    3. F Coppini, P M Santini, “Modulation instability, periodic anomalous wave recurrence, and blow up in the Ablowitz–Ladik lattices”, J. Phys. A: Math. Theor., 57:1 (2024), 015202  crossref  mathscinet
    4. Min-Jie Dong, Li-Xin Tian, Wei Shi, Jing-Dong Wei, Yun Wang, “Solitons, breathers and rational solutions for the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation”, Nonlinear Dyn, 112:12 (2024), 10259  crossref
    5. Liming Ling, Xuan Sun, “Elliptic-rogue waves and modulational instability in nonlinear soliton equations”, Phys. Rev. E, 109:6 (2024)  crossref
    6. Yu-Chen Lee, Markus Brühl, Dong-Jiing Doong, Sander Wahls, Boris Malomed, “Nonlinear Fourier classification of 663 rogue waves measured in the Philippine Sea”, PLoS ONE, 19:5 (2024), e0301709  crossref
    7. P. G. Grinevich, “Riemann Surfaces Close to Degenerate Ones in the Theory of Rogue Waves”, Proc. Steklov Inst. Math., 325 (2024), 86–110  mathnet  crossref  crossref  zmath  isi
    8. B. Prinari, “Inverse scattering transform for nonlinear Schrödinger systems on a nontrivial background: A survey of classical results, new developments and future directions”, J. Nonlinear Math. Phys., 30:2 (2023), 317  crossref  mathscinet  zmath
    9. N. Sinthuja, S. Rajasekar, M. Senthilvelan, “Instability of single- and double-periodic waves in the fourth-order nonlinear Schrödinger equation”, Nonlinear Dyn., 111:17 (2023), 16497  crossref
    10. P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic Cauchy problem for $(2+1)$-dimensional anomalous waves for the focusing Davey–Stewartson $2$ equation”, Russian Math. Surveys, 77:6 (2022), 1029–1059  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. F. Coppini, P. G. Grinevich, P. M. Santini, “Periodic rogue waves and perturbation theory”, Perturbation Theory, Encyclopedia of Complexity and Systems Science Series, Springer, Berlin–Heidelberg, 2022, 565–584  crossref  mathscinet
    12. F. Coppini, P. G. Grinevich, P. M. Santini, “Periodic rogue waves and perturbation theory”, Encyclopedia of Complexity and Systems Science, Springer, Berlin–Heidelberg, 2022, 1–22  crossref  mathscinet
    13. P. G. Grinevich, P. M. Santini, “The linear and nonlinear instability of the Akhmediev breather”, Nonlinearity, 34:12 (2021), 8331–8358  crossref  mathscinet  zmath  isi  scopus
    14. D. E. Pelinovsky, “Instability of double-periodic waves in the nonlinear Schrödinger equation”, Front. Physics, 9 (2021), 599146  crossref  isi  scopus
    15. F. Coppini, P. G. Grinevich, P. M. Santini, Encyclopedia of Complexity and Systems Science, 2021, 1  crossref
    16. Sebastian Klein, Martin Kilian, “On Closed Finite Gap Curves in Spaceforms I”, SIGMA, 16 (2020), 011, 29 pp.  mathnet  crossref
    17. A. Tikan, “Effect of local peregrine soliton emergence on statistics of random waves in the one-dimensional focusing nonlinear Schrodinger equation”, Phys. Rev. E, 101:1 (2020), 012209  crossref  mathscinet  isi  scopus
    18. F. Coppini, P. G. Grinevich, P. M. Santini, “Effect of a small loss or gain in the periodic nonlinear Schrodinger anomalous wave dynamics”, Phys. Rev. E, 101:3 (2020), 032204  crossref  mathscinet  isi  scopus
    19. A. N. Kulikov, D. A. Kulikov, “Odnofazovye i dvukhfazovye resheniya fokusiruyuschego nelineinogo uravneniya Shredingera”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2020, no. 2, 18–34  mathnet  crossref  elib
    20. J. Chen, R. Zhang, “The complex Hamiltonian systems and quasi-periodic solutions in the derivative nonlinear Schrödinger equations”, Stud. Appl. Math., 145:2 (2020), 153–178  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:710
    Russian version PDF:75
    English version PDF:52
    References:77
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025