Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2021, Volume 76, Issue 2, Pages 261–289
DOI: https://doi.org/10.1070/RM9858
(Mi rm9858)
 

This article is cited in 5 scientific papers (total in 5 papers)

Classification of non-Kähler surfaces and locally conformally Kähler geometry

M. S. Verbitskyab, V. Vuletescuc, L. Orneacd

a Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Brasil
b National Research University Higher School of Economics
c University of Bucharest, Bucharest, Romania
d Institute of Mathematics "Simion Stoilow" of the Romanian Academy, Bucharest, Romania
References:
Abstract: The Enriques–Kodaira classification treats non-Kähler surfaces as a special case within the Kodaira framework. We prove the classification results for non-Kähler complex surfaces without relying on the machinery of the Enriques–Kodaira classification, and deduce the classification theorem for non-Kähler surfaces from the Buchdahl–Lamari theorem. We also prove that all non-Kähler surfaces which are not of class VII are locally conformally Kähler.
Bibliography: 64 titles.
Keywords: locally conformally Kähler surface, Kato surface, elliptic fibration.
Funding agency Grant number
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii, Romania PN-III-P4-ID-PCE-2016-0065
National Council for Scientific and Technological Development (CNPq) 313608/2017-2
The second and third authors were partially supported by a grant of the Ministry of Research and Innovation of Romania (CNCS-UEFISCDI, project no. PN-III-P4-ID-PCE-2016-0065 within the programme PNCDI III). The first author was supported by the programme NPq-Process 313608/2017-2.
Received: 30.03.2019
Russian version:
Uspekhi Matematicheskikh Nauk, 2021, Volume 76, Issue 2(458), Pages 71–102
DOI: https://doi.org/10.4213/rm9858
Bibliographic databases:
Document Type: Article
UDC: 515.173.4+515.174.5
MSC: Primary 32H15; Secondary 32Q57, 53C56
Language: English
Original paper language: Russian
Citation: M. S. Verbitsky, V. Vuletescu, L. Ornea, “Classification of non-Kähler surfaces and locally conformally Kähler geometry”, Uspekhi Mat. Nauk, 76:2(458) (2021), 71–102; Russian Math. Surveys, 76:2 (2021), 261–289
Citation in format AMSBIB
\Bibitem{VerVulOrn21}
\by M.~S.~Verbitsky, V.~Vuletescu, L.~Ornea
\paper Classification of non-K\"ahler surfaces and locally conformally K\"ahler geometry
\jour Uspekhi Mat. Nauk
\yr 2021
\vol 76
\issue 2(458)
\pages 71--102
\mathnet{http://mi.mathnet.ru/rm9858}
\crossref{https://doi.org/10.4213/rm9858}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4236241}
\zmath{https://zbmath.org/?q=an:1471.32023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021RuMaS..76..261V}
\elib{https://elibrary.ru/item.asp?id=46957181}
\transl
\jour Russian Math. Surveys
\yr 2021
\vol 76
\issue 2
\pages 261--289
\crossref{https://doi.org/10.1070/RM9858}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701485000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110476809}
Linking options:
  • https://www.mathnet.ru/eng/rm9858
  • https://doi.org/10.1070/RM9858
  • https://www.mathnet.ru/eng/rm/v76/i2/p71
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:425
    Russian version PDF:131
    English version PDF:73
    Russian version HTML:139
    References:49
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024