Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2019, Volume 74, Issue 1, Pages 1–35
DOI: https://doi.org/10.1070/RM9849
(Mi rm9849)
 

Introduction to Heegaard Floer homology

E. A. Gorskyabc

a Moscow State University
b International Laboratory of Representation Theory and Mathematical Physics, National Research University Higher School of Economics
c University of California, Davis, USA
References:
Abstract: Heegaard Floer homology is an invariant of knots, links, and 3-manifolds introduced by Ozsváth and Szabó about 15 years ago. This survey defines Heegaard Floer homology and describes its basic properties. Also discussed is the relation between Heegaard Floer homology and invariants of singularities of curves and surfaces.
Bibliography: 72 titles.
Keywords: knots, links, 3-manifolds, Alexander polynomial, plane curve singularities, Heegaard Floer homology.
Funding agency Grant number
Russian Science Foundation 16-11-10018
Supported by the Russian Science Foundation (project no. 16-11-10018).
Received: 29.07.2018
Russian version:
Uspekhi Matematicheskikh Nauk, 2019, Volume 74, Issue 1(445), Pages 3–40
DOI: https://doi.org/10.4213/rm9849
Bibliographic databases:
Document Type: Article
UDC: 515.162
MSC: Primary 57M27, 57R58; Secondary 32S25
Language: English
Original paper language: Russian
Citation: E. A. Gorsky, “Introduction to Heegaard Floer homology”, Uspekhi Mat. Nauk, 74:1(445) (2019), 3–40; Russian Math. Surveys, 74:1 (2019), 1–35
Citation in format AMSBIB
\Bibitem{Gor19}
\by E.~A.~Gorsky
\paper Introduction to Heegaard Floer homology
\jour Uspekhi Mat. Nauk
\yr 2019
\vol 74
\issue 1(445)
\pages 3--40
\mathnet{http://mi.mathnet.ru/rm9849}
\crossref{https://doi.org/10.4213/rm9849}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920426}
\zmath{https://zbmath.org/?q=an:1433.57003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74....1G}
\elib{https://elibrary.ru/item.asp?id=37045197}
\transl
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 1
\pages 1--35
\crossref{https://doi.org/10.1070/RM9849}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000465431500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067998812}
Linking options:
  • https://www.mathnet.ru/eng/rm9849
  • https://doi.org/10.1070/RM9849
  • https://www.mathnet.ru/eng/rm/v74/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:754
    Russian version PDF:173
    English version PDF:127
    References:71
    First page:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024