Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2019, Volume 74, Issue 4, Pages 659–733
DOI: https://doi.org/10.1070/RM9846
(Mi rm9846)
 

This article is cited in 23 scientific papers (total in 23 papers)

Sobolev-orthogonal systems of functions and some of their applications

I. I. Sharapudinovab

a Daghestan Scientific Centre of Russian Academy of Sciences
b Vladikavkaz Scientific Centre of Russian Academy of Sciences
References:
Abstract: Systems of functions are considered which are associated with a given orthogonal system and are orthogonal with respect to an inner product of Sobolev type involving terms with masses concentrated at a point. Special attention is paid to such systems generated by classical orthogonal systems such as the cosine system, the Haar system, and the systems of Legendre, Jacobi, and Laguerre polynomials. The approximation properties of Fourier series in Sobolev-orthogonal systems are investigated in several cases. For (generally speaking, non-linear) systems of differential equations deep connections between Sobolev-orthogonal systems and the Cauchy problem are considered.
Bibliography: 54 titles.
Keywords: Sobolev-orthogonal systems; Cauchy problem for a system of ordinary differential equations; systems generated by the Haar polynomials, the cosines, the Legendre, Jacobi, Laguerre polynomials.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00486-а
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 16-01-00486-a).
Received: 30.07.2018
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733
Citation in format AMSBIB
\Bibitem{Sha19}
\by I.~I.~Sharapudinov
\paper Sobolev-orthogonal systems of functions and some of their applications
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 4
\pages 659--733
\mathnet{http://mi.mathnet.ru/eng/rm9846}
\crossref{https://doi.org/10.1070/RM9846}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985713}
\zmath{https://zbmath.org/?q=an:1434.42039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..659S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510640800003}
\elib{https://elibrary.ru/item.asp?id=38710213}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087212191}
Linking options:
  • https://www.mathnet.ru/eng/rm9846
  • https://doi.org/10.1070/RM9846
  • https://www.mathnet.ru/eng/rm/v74/i4/p87
  • This publication is cited in the following 23 articles:
    1. R. M. Gadzhimirzaev, “Convergence of the Fourier Series in Meixner–Sobolev Polynomials and Approximation Properties of Its Partial Sums”, Math. Notes, 115:3 (2024), 301–316  mathnet  crossref  crossref  mathscinet
    2. Juan C. García-Ardila, Misael E. Marriaga, “Approximation by polynomials in Sobolev spaces associated with classical moment functionals”, Numer Algor, 95:1 (2024), 285  crossref
    3. R. M. Gadzhimirzaev, “Estimates for the Convergence Rate of a Fourier Series in Laguerre–Sobolev Polynomials”, Sib Math J, 65:4 (2024), 751  crossref
    4. R. M. Gadzhimirzaev, “Otsenki skorosti skhodimosti ryada Fure po polinomam Lagerra — Soboleva”, Sib. matem. zhurn., 65:4 (2024), 622–635  mathnet  crossref
    5. R. M. Gadzhimirzaev, “Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials”, Sb. Math., 215:9 (2024), 1202–1223  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    6. M. G. Magomed-Kasumov, “The uniform convergence of Fourier series in a system of the Sobolev orthogonal polynomials associated to ultraspherical Jacobi polynomials”, Siberian Math. J., 65:6 (2024), 1343–1358  mathnet  crossref  crossref
    7. M. G. Magomed-Kasumov, “Sobolevskie sistemy, ortogonalnye otnositelno vesovogo skalyarnogo proizvedeniya s dvumya diskretnymi tochkami, i ryady Fure po nim”, Izv. vuzov. Matem., 2024, no. 11, 35–50  mathnet  crossref
    8. M. G. Magomed-Kasumov, “Weighted Sobolev Orthogonal Systems with Two Discrete Points and Fourier Series with Respect to Them”, Russ Math., 68:11 (2024), 29  crossref
    9. M. G. Magomed-Kasumov, “The uniform convergence of Fourier series in a system of polynomials orthogonal in the sense of Sobolev and associated to Jacobi polynomials”, Siberian Math. J., 64:2 (2023), 338–346  mathnet  crossref  crossref  mathscinet
    10. J. F. Ma  Ma  J. J. Moreno-Balcázar, “Sobolev orthogonal polynomials: asymptotics and symbolic computation”, East Asian J. Appl. Math., 12 (2022), 535–563  crossref  mathscinet  isi  scopus
    11. M. G. Magomed-Kasumov, T. N. Shakh-Emirov, “On the Representation of Sobolev Systems Orthogonal with Respect to the Inner Product with One Discrete Point”, Math. Notes, 111:4 (2022), 579–586  mathnet  crossref  crossref  mathscinet
    12. B. P. Osilenker, “On multipliers for Fourier series in Sobolev orthogonal polynomials”, Sb. Math., 213:8 (2022), 1058–1095  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. M. G. Magomed-Kasumov, “Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side”, Vladikavk. matem. zhurn., 24:1 (2022), 54–64  mathnet  crossref  mathscinet
    14. Alejandro Molano, “Fourier coefficients for Laguerre–Sobolev type orthogonal polynomials”, Arab Journal of Mathematical Sciences, 29:2 (2022)  crossref  mathscinet
    15. R. M. Gadzhimirzaev, “Estimates for Sobolev-orthonormal functions and generated by Laguerre functions”, Probl. anal. Issues Anal., 10(28):1 (2021), 23–37  mathnet  crossref  elib
    16. M. G. Magomed-Kasumov, “Otsenki skorosti skhodimosti ryadov Fure po ortogonalnoi v smysle Soboleva sisteme funktsii, porozhdennoi sistemoi Uolsha”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 200, VINITI RAN, M., 2021, 73–80  mathnet  crossref
    17. Ó. Ciaurri, J. Mínguez Ceniceros, “Fourier series for coherent pairs of Jacobi measures”, Integral Transforms Spec. Funct., 32:5-8 (2021), 437–457  crossref  mathscinet  zmath  isi  scopus
    18. M. G. Magomed-Kasumov, S. R. Magomedov, “Bystroe preobrazovanie Fure po sisteme funktsii, ortogonalnykh po Sobolevu i porozhdennykh sistemoi Uolsha”, Dagestanskie elektronnye matematicheskie izvestiya, 2021, no. 15, 55–66  mathnet  crossref
    19. M. G. Magomed-Kasumov, “Sobolev orthogonal systems with two discrete points and Fourier series”, Russian Math. (Iz. VUZ), 65:12 (2021), 47–55  mathnet  crossref  crossref
    20. J. F. Mañas-Manas, J. J. Moreno-Balcázar, R. Wellman, “Eigenvalue problem for discrete Jacobi-Sobolev orthogonal polynomials”, Mathematics, 8:2 (2020), 182  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:672
    Russian version PDF:117
    English version PDF:65
    References:79
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025