Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2018, Volume 73, Issue 3, Pages 457–518
DOI: https://doi.org/10.1070/RM9832
(Mi rm9832)
 

This article is cited in 17 scientific papers (total in 17 papers)

Zero distribution for Angelesco Hermite–Padé polynomials

E. A. Rakhmanovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b University of South Florida, Tampa, FL, USA
References:
Abstract: This paper considers the zero distribution of Hermite–Padé polynomials of the first kind associated with a vector function
f=(f1,,fs)
whose components fk are functions with a finite number of branch points in the plane. The branch sets of component functions are assumed to be sufficiently well separated (which constitutes the Angelesco case). Under this condition, a theorem on the limit zero distribution for such polynomials is proved. The limit measures are defined in terms of a known vector equilibrium problem.
The proof of the theorem is based on methods developed by Stahl [59][63] and Gonchar and the author [27][55]. These methods are generalized further in the paper in application to collections of polynomials defined by systems of complex orthogonality relations.
Together with the characterization of the limit zero distributions of Hermite–Padé polynomials in terms of a vector equilibrium problem, the paper considers an alternative characterization using a Riemann surface R(f) associated with f. In these terms, a more general conjecture (without the Angelesco condition) on the zero distribution of Hermite–Padé polynomials is presented.
Bibliography: 72 titles.
Keywords: rational approximations, Hermite–Padé polynomials, zero distribution, equilibrium problem, S-compact set.
Received: 20.12.2017
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30C15, 41A21
Language: English
Original paper language: Russian
Citation: E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518
Citation in format AMSBIB
\Bibitem{Rak18}
\by E.~A.~Rakhmanov
\paper Zero distribution for Angelesco Hermite--Pad\'e polynomials
\jour Russian Math. Surveys
\yr 2018
\vol 73
\issue 3
\pages 457--518
\mathnet{http://mi.mathnet.ru/eng/rm9832}
\crossref{https://doi.org/10.1070/RM9832}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807896}
\zmath{https://zbmath.org/?q=an:06982237}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018RuMaS..73..457R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000444402100002}
\elib{https://elibrary.ru/item.asp?id=34940674}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054027341}
Linking options:
  • https://www.mathnet.ru/eng/rm9832
  • https://doi.org/10.1070/RM9832
  • https://www.mathnet.ru/eng/rm/v73/i3/p89
  • This publication is cited in the following 17 articles:
    1. S. P. Suetin, “O skalyarnykh podkhodakh k izucheniyu predelnogo raspredeleniya nulei mnogochlenov Ermita–Pade dlya sistemy Nikishina”, UMN, 80:1(481) (2025), 85–152  mathnet  crossref
    2. A. V. Komlov, R. V. Palvelev, “Zeros of discriminants constructed from Hermite–Padé polynomials of an algebraic function and their relation to branch points”, Sb. Math., 215:12 (2024), 1633–1665  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. A. P. Magnus, J. Meinguet, “Strong asymptotics of the best rational approximation to the exponential function on a bounded interval”, Sb. Math., 215:12 (2024), 1666–1719  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. S. P. Suetin, “Convergence of Hermite–Padé rational approximations”, Russian Math. Surveys, 78:5 (2023), 967–969  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. E. A. Rakhmanov, S. P. Suetin, “Approksimatsii Chebysheva–Pade dlya mnogoznachnykh funktsii”, Tr. MMO, 83, no. 2, MTsNMO, M., 2022, 319–344  mathnet
    6. V. G. Lysov, “Mnogourovnevye interpolyatsii dlya obobschennoi sistemy Nikishina na grafe-dereve”, Tr. MMO, 83, no. 2, MTsNMO, M., 2022, 345–361  mathnet
    7. N. R. Ikonomov, S. P. Suetin, “Struktura nattollovskogo razbieniya dlya nekotorogo klassa chetyrekhlistnykh rimanovykh poverkhnostei”, Tr. MMO, 83, no. 1, MTsNMO, M., 2022, 37–61  mathnet
    8. E. A. Rakhmanov, S. P. Suetin, “Chebyshev–Padé approximants for multivalued functions”, Trans. Moscow Math. Soc.,  mathnet  mathnet  crossref
    9. V. G. Lysov, “Multilevel interpolations for the generalized Nikishin system on a tree graph”, Trans. Moscow Math. Soc.,  mathnet  mathnet  crossref
    10. N. R. Ikonomov, S. P. Suetin, “Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces”, Trans. Moscow Math. Soc., 2022,  mathnet  mathnet  crossref
    11. A. V. Komlov, “The polynomial Hermite-Padé m-system for meromorphic functions on a compact Riemann surface”, Sb. Math., 212:12 (2021), 1694–1729  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. I. A. Aptekarev, S. A. Denisov, M. L. Yattselev, “Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials”, Trans. Amer. Math. Soc., 373:2 (2020), 875–917  crossref  mathscinet  zmath  isi  scopus
    13. N. R. Ikonomov, S. P. Suetin, “Scalar Equilibrium Problem and the Limit Distribution of Zeros of Hermite–Padé Polynomials of Type II”, Proc. Steklov Inst. Math., 309 (2020), 159–182  mathnet  crossref  crossref  mathscinet  isi  elib
    14. S. P. Suetin, “Existence of a three-sheeted Nutall surface for a certain class of infinite-valued analytic functions”, Russian Math. Surveys, 74:2 (2019), 363–365  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. S.-Y. Lee, M. Yang, “Planar orthogonal polynomials as Type II multiple orthogonal polynomials”, J. Phys. A, 52:27 (2019), 275202, 14 pp.  crossref  mathscinet  isi  scopus
    16. S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    17. S. P. Suetin, “On an Example of the Nikishin System”, Math. Notes, 104:6 (2018), 905–914  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:760
    Russian version PDF:185
    English version PDF:45
    References:74
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025