Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2017, Volume 72, Issue 3, Pages 451–478
DOI: https://doi.org/10.1070/RM9779
(Mi rm9779)
 

This article is cited in 10 scientific papers (total in 10 papers)

Topological approach to the generalized $n$-centre problem

S. V. Bolotin, V. V. Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: This paper considers a natural Hamiltonian system with two degrees of freedom and Hamiltonian $H=\|p\|^2/2+V(q)$. The configuration space $M$ is a closed surface (for non-compact $M$ certain conditions at infinity are required). It is well known that if the potential energy $V$ has $n>2\chi(M)$ Newtonian singularities, then the system is not integrable and has positive topological entropy on the energy level $H=h>\sup V$. This result is generalized here to the case when the potential energy has several singular points $a_j$ of type $V(q)\sim {-}\operatorname{dist}(q,a_j)^{-\alpha_j}$. Let $A_k=2-2k^{-1}$, $k\in\mathbb{N}$, and let $n_k$ be the number of singular points with $A_k\leqslant \alpha_j<A_{k+1}$. It is proved that if
$$ \sum_{2\leqslant k\leqslant\infty}n_kA_k>2\chi(M), $$
then the system has a compact chaotic invariant set of collision-free trajectories on any energy level $H=h>\sup V$. This result is purely topological: no analytical properties of the potential energy are used except the presence of singularities. The proofs are based on the generalized Levi-Civita regularization and elementary topology of coverings. As an example, the plane $n$-centre problem is considered.
Bibliography: 29 titles.
Keywords: Hamiltonian system, integrability, singular point, degree of singular point, Levi-Civita regularization, Finsler metric, covering, collision-free trajectory, chaotic invariant set, metric space, Jacobi metric.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant 14-50-00005.
Received: 25.04.2017
Bibliographic databases:
Document Type: Article
UDC: 517.913+531.01
MSC: Primary 70F10; Secondary 37N05, 70G40
Language: English
Original paper language: Russian
Citation: S. V. Bolotin, V. V. Kozlov, “Topological approach to the generalized $n$-centre problem”, Russian Math. Surveys, 72:3 (2017), 451–478
Citation in format AMSBIB
\Bibitem{BolKoz17}
\by S.~V.~Bolotin, V.~V.~Kozlov
\paper Topological approach to the generalized $n$-centre problem
\jour Russian Math. Surveys
\yr 2017
\vol 72
\issue 3
\pages 451--478
\mathnet{http://mi.mathnet.ru//eng/rm9779}
\crossref{https://doi.org/10.1070/RM9779}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3662459}
\zmath{https://zbmath.org/?q=an:1427.70031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017RuMaS..72..451B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412068800002}
\elib{https://elibrary.ru/item.asp?id=29833699}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030652441}
Linking options:
  • https://www.mathnet.ru/eng/rm9779
  • https://doi.org/10.1070/RM9779
  • https://www.mathnet.ru/eng/rm/v72/i3/p65
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024