Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2017, Volume 72, Issue 3, Pages 389–449
DOI: https://doi.org/10.1070/RM9769
(Mi rm9769)
 

This article is cited in 14 scientific papers (total in 14 papers)

On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials

A. I. Aptekareva, G. López Lagomasinob, A. Martínez-Finkelshteinc

a Federal Research Centre Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
b Carlos III University of Madrid, Madrid, Spain
c Universidad de Almería, Almería, Spain
References:
Abstract: This survey considers multiple orthogonal polynomials with respect to Nikishin systems generated by a pair $(\sigma_1,\sigma_2)$ of measures\linebreak with unbounded supports ($\operatorname{supp}(\sigma_1) \subseteq \mathbb{R}_+$, $\operatorname{supp}(\sigma_2)\subset \mathbb{R}_-$) and with $\sigma_2$ discrete. A Nikishin-type equilibrium problem in the presence of an external field acting on $\mathbb{R}_+$ and a constraint on $\mathbb{R}_-$ is stated and solved. The solution is used for deriving the contracted zero distribution of the associated multiple orthogonal polynomials.
Bibliography: 56 titles.
Keywords: Hermite–Padé approximants, multiple orthogonal polynomials, orthogonality with respect to a discrete measure, weak asymptotics, vector equilibrium problem, Nikishin systems.
Funding agency Grant number
Russian Science Foundation 14-21-00025п
European Regional Development Fund
Consejería Economía, Innovación, Ciencia y Empleo, Junta de Andalucía P11-FQM-7276
FQM-229
Ministerio de Economía y Competitividad MTM2015-65888-C4-2-P
MTM2011-28952-C02-01
Fundación CEI.Mar
The work of the first author was supported by a grant of the Russian Science Foundation (project no. 14-21-00025п). The second and the third authors were supported by MICINN of Spain (grant nos. MTM2015-65888-C4-2-P and MTM2011-28952-C02-01) and by the European Regional Development Fund, and the third author was also supported by Junta de Andalucía (the Excellence Grant P11-FQM-7276 and the research group FQM-229) and by Campus de Excelencia Internacional del Mar of the University of Almería.
Received: 13.03.2017
Revised: 10.04.2017
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: Primary 42C05; Secondary 31A99, 41A21
Language: English
Original paper language: Russian
Citation: A. I. Aptekarev, G. López Lagomasino, A. Martínez-Finkelshtein, “On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials”, Russian Math. Surveys, 72:3 (2017), 389–449
Citation in format AMSBIB
\Bibitem{AptLopMar17}
\by A.~I.~Aptekarev, G.~L\'opez Lagomasino, A.~Mart{\'\i}nez-Finkelshtein
\paper On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials
\jour Russian Math. Surveys
\yr 2017
\vol 72
\issue 3
\pages 389--449
\mathnet{http://mi.mathnet.ru//eng/rm9769}
\crossref{https://doi.org/10.1070/RM9769}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3662458}
\zmath{https://zbmath.org/?q=an:1379.42011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017RuMaS..72..389A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412068800001}
\elib{https://elibrary.ru/item.asp?id=29833698}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030642049}
Linking options:
  • https://www.mathnet.ru/eng/rm9769
  • https://doi.org/10.1070/RM9769
  • https://www.mathnet.ru/eng/rm/v72/i3/p3
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:648
    Russian version PDF:61
    English version PDF:27
    References:65
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024