Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2017, Volume 72, Issue 1, Pages 33–99
DOI: https://doi.org/10.1070/RM9754
(Mi rm9754)
 

This article is cited in 25 scientific papers (total in 25 papers)

Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors

A. A. Hutsalyuka, A. Liashykbcd, S. Z. Pakulyakaef, E. Ragoucyg, N. A. Slavnovh

a Moscow Institute of Physics and Technology
b Bogoliubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
c National Research University "Higher School of Economics"
d Skolkovo Institute of Science and Technology
e Joint Institute for Nuclear Research
f A. I. Alikhanov Institute for Theoretical and Experimental Physics
g Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Annecy-le-Vieux, France
h Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Bethe vectors are found for quantum integrable models associated with the supersymmetric Yangians $Y(\mathfrak{gl}(m|n)$ in terms of the current generators of the Yangian double $DY(\mathfrak{gl}(m|n))$. The method of projections onto intersections of different types of Borel subalgebras of this infinite-dimensional algebra is used to construct the Bethe vectors. Calculation of these projections makes it possible to express the supersymmetric Bethe vectors in terms of the matrix elements of the universal monodromy matrix. Two different presentations for the Bethe vectors are obtained by using two different but isomorphic current realizations of the Yangian double $DY(\mathfrak{gl}(m|n))$. These Bethe vectors are also shown to obey certain recursion relations which prove their equivalence.
Bibliography: 30 titles.
Keywords: Bethe vector, current algebra, monodromy matrix, Gauss decomposition, projection.
Funding agency Grant number
Centre National de la Recherche Scientifique F14-2016
Ministry of Education and Science of the Russian Federation 5-100
Russian Foundation for Basic Research 14-01-00547-а
15-31-20484-мол_а_вед.
N.A.S. thanks LAPTH in Annecy-le-Vieux for their hospitality and stimulating scientific atmosphere and CNRS for partial financial support. The work of A.L. was funded by the Russian Academic Excellence Project (project 5-100) and the joint NASU-CNRS project F14-2016. The work of S.P. was supported in part by the Russian Foundation for Basic Research (grant no. 14-01-00547-a). N.A.S. was supported by the Russian Foundation for Basic Research (grant no. 15-31-20484-мол_а_вед).
Received: 29.11.2016
Bibliographic databases:
Document Type: Article
UDC: 512.579
MSC: Primary 82B23; Secondary 81R50, 17B80, 17B37
Language: English
Original paper language: Russian
Citation: A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Russian Math. Surveys, 72:1 (2017), 33–99
Citation in format AMSBIB
\Bibitem{HutLiaPak17}
\by A.~A.~Hutsalyuk, A.~Liashyk, S.~Z.~Pakulyak, E.~Ragoucy, N.~A.~Slavnov
\paper Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors
\jour Russian Math. Surveys
\yr 2017
\vol 72
\issue 1
\pages 33--99
\mathnet{http://mi.mathnet.ru//eng/rm9754}
\crossref{https://doi.org/10.1070/RM9754}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3608030}
\zmath{https://zbmath.org/?q=an:1377.82026}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017RuMaS..72...33H}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401848400002}
\elib{https://elibrary.ru/item.asp?id=28169182}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018356364}
Linking options:
  • https://www.mathnet.ru/eng/rm9754
  • https://doi.org/10.1070/RM9754
  • https://www.mathnet.ru/eng/rm/v72/i1/p37
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:759
    Russian version PDF:86
    English version PDF:25
    References:54
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024