Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2016, Volume 71, Issue 4, Pages 605–702
DOI: https://doi.org/10.1070/RM9729
(Mi rm9729)
 

This article is cited in 59 scientific papers (total in 59 papers)

Operator Lipschitz functions

A. B. Aleksandrova, V. V. Pellerb

a St. Petersburg Department of the Steklov Mathematical Institute of the Russian Academy of Sciences
b Michigan State University, East Lansing, Michigan, USA
References:
Abstract: The goal of this survey is a comprehensive study of operator Lipschitz functions. A continuous function $f$ on the real line $\mathbb{R}$ is said to be operator Lipschitz if $\|f(A)-f(B)\|\leqslant\mathrm{const}\|A-B\|$ for arbitrary self-adjoint operators $A$ and $B$. Sufficient conditions and necessary conditions are given for operator Lipschitzness. The class of operator differentiable functions on $\mathbb{R}$ is also studied. Further, operator Lipschitz functions on closed subsets of the plane are considered, and the class of commutator Lipschitz functions on such subsets is introduced. An important role for the study of such classes of functions is played by double operator integrals and Schur multipliers.
Bibliography: 77 titles.
Keywords: functions of operators, operator Lipschitz functions, operator differentiable functions, self-adjoint operators, normal operators, divided differences, double operator integrals, Schur multipliers, linear-fractional transformations, Besov classes, Carleson measures.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00198
National Science Foundation DMS 130092
The first author was supported by the Russian Foundation for Basic Research (grant no. 14-01-00198), and the second author by the National Science Foundation (grant no. DMS-130092).
Received: 02.05.2016
Bibliographic databases:
Document Type: Article
UDC: 517.983.28+517.984.4+517.983.24
MSC: Primary 26A16, 47A56; Secondary 47B15
Language: English
Original paper language: Russian
Citation: A. B. Aleksandrov, V. V. Peller, “Operator Lipschitz functions”, Russian Math. Surveys, 71:4 (2016), 605–702
Citation in format AMSBIB
\Bibitem{AlePel16}
\by A.~B.~Aleksandrov, V.~V.~Peller
\paper Operator Lipschitz functions
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 4
\pages 605--702
\mathnet{http://mi.mathnet.ru//eng/rm9729}
\crossref{https://doi.org/10.1070/RM9729}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588921}
\zmath{https://zbmath.org/?q=an:06670711}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71..597P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391301300001}
\elib{https://elibrary.ru/item.asp?id=26604180}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84997294324}
Linking options:
  • https://www.mathnet.ru/eng/rm9729
  • https://doi.org/10.1070/RM9729
  • https://www.mathnet.ru/eng/rm/v71/i4/p3
  • This publication is cited in the following 59 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025