Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2016, Volume 71, Issue 2, Pages 185–251
DOI: https://doi.org/10.1070/RM9704
(Mi rm9704)
 

This article is cited in 17 scientific papers (total in 17 papers)

Homotopy theory in toric topology

J. Grbić, S. Theriault

University of Southampton, Southampton, UK
References:
Abstract: In toric topology one associates with each simplicial complex $K$ on $m$ vertices two key spaces, the Davis–Januszkiewicz space $DJ_{K}$ and the moment-angle complex $\mathscr{Z}_{K}$, which are related by a homotopy fibration $\mathscr{Z}_{K}\xrightarrow{\widetilde{w}}DJ_K\to \prod_{i=1}^{m}\mathbb{C}P^{\infty}$. A great deal of work has been done to study the properties of $DJ_{K}$ and $\mathscr{Z}_{K}$, their generalizations to polyhedral products, and applications to algebra, combinatorics, and geometry. Chap. 1 surveys some of the main results in the homotopy theory of these spaces. Chap. 2 breaks new ground by initiating a study of the map $\widetilde{w}$. It is shown that, for a certain family of simplicial complexes $K$, the map $\widetilde{w}$ is a sum of higher and iterated Whitehead products.
Bibliography: 49 titles.
Keywords: Davis–Januszkiewicz space, moment-angle complex, polyhedral product, homotopy type, higher Whitehead product, higher Samelson product.
Received: 16.04.2015
Bibliographic databases:
Document Type: Article
UDC: 515.1
MSC: 55Pxx, 55Q15, 57N65
Language: English
Original paper language: Russian
Citation: J. Grbić, S. Theriault, “Homotopy theory in toric topology”, Russian Math. Surveys, 71:2 (2016), 185–251
Citation in format AMSBIB
\Bibitem{GrbThe16}
\by J.~Grbi{\'c}, S.~Theriault
\paper Homotopy theory in toric topology
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 2
\pages 185--251
\mathnet{http://mi.mathnet.ru//eng/rm9704}
\crossref{https://doi.org/10.1070/RM9704}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507473}
\zmath{https://zbmath.org/?q=an:1346.55014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71..185G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380765700001}
\elib{https://elibrary.ru/item.asp?id=25865516}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979900458}
Linking options:
  • https://www.mathnet.ru/eng/rm9704
  • https://doi.org/10.1070/RM9704
  • https://www.mathnet.ru/eng/rm/v71/i2/p3
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:889
    Russian version PDF:276
    English version PDF:48
    References:100
    First page:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024