Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2015, Volume 70, Issue 5, Pages 857–899
DOI: https://doi.org/10.1070/RM2015v070n05ABEH004965
(Mi rm9668)
 

This article is cited in 21 scientific papers (total in 21 papers)

An extended anyon Fock space and noncommutative Meixner-type orthogonal polynomials in infinite dimensions

M. Bożejkoa, E. W. Lytvynovb, I. V. Rodionovab

a Institute of Mathematics, Wrocław University, Wrocław, Poland
b Swansea University, Swansea, UK
References:
Abstract: Let $\nu$ be a finite measure on $\mathbb R$ whose Laplace transform is analytic in a neighbourhood of zero. An anyon Lévy white noise on $(\mathbb R^d,dx)$ is a certain family of noncommuting operators $\langle\omega,\varphi\rangle$ on the anyon Fock space over $L^2(\mathbb R^d\times\mathbb R,dx\otimes\nu)$, where $\varphi=\varphi(x)$ runs over a space of test functions on $\mathbb R^d$, while $\omega=\omega(x)$ is interpreted as an operator-valued distribution on $\mathbb R^d$. Let $L^2(\tau)$ be the noncommutative $L^2$-space generated by the algebra of polynomials in the variables $\langle \omega,\varphi\rangle$, where $\tau$ is the vacuum expectation state. Noncommutative orthogonal polynomials in $L^2(\tau)$ of the form $\langle P_n(\omega),f^{(n)}\rangle$ are constructed, where $f^{(n)}$ is a test function on $(\mathbb R^d)^n$, and are then used to derive a unitary isomorphism $U$ between $L^2(\tau)$ and an extended anyon Fock space $\mathbf F(L^2(\mathbb R^d,dx))$ over $L^2(\mathbb R^d,dx)$. The usual anyon Fock space $\mathscr F(L^2(\mathbb R^d,dx))$ over $L^2(\mathbb R^d,dx)$ is a subspace of $\mathbf F(L^2(\mathbb R^d,dx))$. Furthermore, the equality $\mathbf F(L^2(\mathbb R^d,dx))=\mathscr F(L^2(\mathbb R^d,dx))$ holds if and only if the measure $\nu$ is concentrated at a single point, that is, in the Gaussian or Poisson case. With use of the unitary isomorphism $U$, the operators $\langle \omega,\varphi\rangle$ are realized as a Jacobi (that is, tridiagonal) field in $\mathbf F(L^2(\mathbb R^d,dx))$. A Meixner-type class of anyon Lévy white noise is derived for which the corresponding Jacobi field in $\mathbf F(L^2(\mathbb R^d,dx))$ has a relatively simple structure. Each anyon Lévy white noise of Meixner type is characterized by two parameters, $\lambda\in\mathbb R$ and $\eta\geqslant0$. In conclusion, the representation $\omega(x)=\partial_x^\dag+\lambda \partial_x^\dag\partial_x +\eta\partial_x^\dag\partial_x\partial_x+\partial_x$ is obtained, where $\partial_x$ and $\partial_x^\dag$ are the annihilation and creation operators at the point $x$.
Bibliography: 57 titles.
Keywords: anyon commutation relations, anyon Fock space, gamma process, Jacobi field, Lévy white noise, Meixner class of orthogonal polynomials.
Funding agency Grant number
National Science Centre (Narodowe Centrum Nauki) Dec-2012/05/B/ST1/00626
Dec-2011/02/A/ST1/00119
Universität Bielefeld SFB 701
The work of the first and second authors was carried out with the financial support of the Polish National Science Center (grant no. Dec-2012/05/B/ST1/00626) and of the Collaborative Research Centre at Bielefeld University (SFB 701), in the framework of the programme "Spectral structures and topological methods in mathematics". The first author was also partially supported by the MAESTRO programme (grant no. Dec-2011/02/A/ST1/00119).
Received: 01.12.2014
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: Primary 46L53, 60G51, 60H40; Secondary 33C45
Language: English
Original paper language: Russian
Citation: M. Bożejko, E. W. Lytvynov, I. V. Rodionova, “An extended anyon Fock space and noncommutative Meixner-type orthogonal polynomials in infinite dimensions”, Russian Math. Surveys, 70:5 (2015), 857–899
Citation in format AMSBIB
\Bibitem{BozLytRod15}
\by M.~Bo{\.z}ejko, E.~W.~Lytvynov, I.~V.~Rodionova
\paper An extended anyon Fock space and noncommutative Meixner-type orthogonal polynomials in infinite dimensions
\jour Russian Math. Surveys
\yr 2015
\vol 70
\issue 5
\pages 857--899
\mathnet{http://mi.mathnet.ru//eng/rm9668}
\crossref{https://doi.org/10.1070/RM2015v070n05ABEH004965}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438555}
\zmath{https://zbmath.org/?q=an:06608773}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RuMaS..70..857B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368253700002}
\elib{https://elibrary.ru/item.asp?id=24850539}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84955253157}
Linking options:
  • https://www.mathnet.ru/eng/rm9668
  • https://doi.org/10.1070/RM2015v070n05ABEH004965
  • https://www.mathnet.ru/eng/rm/v70/i5/p75
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025