Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2015, Volume 70, Issue 4, Pages 715–773
DOI: https://doi.org/10.1070/RM2015v070n04ABEH004958
(Mi rm9667)
 

This article is cited in 11 scientific papers (total in 11 papers)

Infinite symmetric groups and combinatorial constructions of topological field theory type

Yu. A. Neretinabcd

a University of Vienna, Vienna, Austria
b Institute for Theoretical and Experimental Physics, Moscow
c Moscow State University
d Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: This paper contains a survey of train constructions for infinite symmetric groups and related groups. For certain pairs (a group $G$, a subgroup $K$) categories are constructed whose morphisms are two-dimensional surfaces tiled by polygons and coloured in a certain way. A product of morphisms is a gluing together of combinatorial bordisms, and functors from the category of bordisms to the category of Hilbert spaces and bounded operators correspond to unitary representations of $G$. The construction has numerous variations: instead of surfaces there can also be one-dimensional objects of Brauer diagram type, multidimensional pseudomanifolds, and bipartite graphs.
Bibliography: 66 titles.
Keywords: infinite symmetric group, representations of categories, spherical representations, double cosets, bordisms.
Funding agency Grant number
Austrian Science Fund P25142
This work was supported by the Austrian Science Fund FWF (grant no. P25142).
Received: 01.12.2014
Russian version:
Uspekhi Matematicheskikh Nauk, 2015, Volume 70, Issue 4(424), Pages 143–204
DOI: https://doi.org/10.4213/rm9667
Bibliographic databases:
Document Type: Article
UDC: 517.986.4+519.12+512.583
MSC: 20B30, 20C32
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Uspekhi Mat. Nauk, 70:4(424) (2015), 143–204; Russian Math. Surveys, 70:4 (2015), 715–773
Citation in format AMSBIB
\Bibitem{Ner15}
\by Yu.~A.~Neretin
\paper Infinite symmetric groups and combinatorial constructions of topological field theory type
\jour Uspekhi Mat. Nauk
\yr 2015
\vol 70
\issue 4(424)
\pages 143--204
\mathnet{http://mi.mathnet.ru/rm9667}
\crossref{https://doi.org/10.4213/rm9667}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3400571}
\zmath{https://zbmath.org/?q=an:06536948}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RuMaS..70..715N}
\elib{https://elibrary.ru/item.asp?id=24073828}
\transl
\jour Russian Math. Surveys
\yr 2015
\vol 70
\issue 4
\pages 715--773
\crossref{https://doi.org/10.1070/RM2015v070n04ABEH004958}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366097300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948984376}
Linking options:
  • https://www.mathnet.ru/eng/rm9667
  • https://doi.org/10.1070/RM2015v070n04ABEH004958
  • https://www.mathnet.ru/eng/rm/v70/i4/p143
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:819
    Russian version PDF:451
    English version PDF:26
    References:92
    First page:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024