Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2015, Volume 70, Issue 3, Pages 453–482
DOI: https://doi.org/10.1070/RM2015v070n03ABEH004952
(Mi rm9661)
 

This article is cited in 26 scientific papers (total in 26 papers)

Combinatorial solutions to integrable hierarchies

M. È. Kazarianab, S. K. Landob

a Steklov Mathematical Institute of Russian Academy of Sciences
b National Research University Higher School of Economics
References:
Abstract: This paper reviews modern approaches to the construction of formal solutions to integrable hierarchies of mathematical physics whose coefficients are answers to various enumerative problems. The relationship between these approaches and the combinatorics of symmetric groups and their representations is explained. Applications of the results to the construction of efficient computations in problems related to models of quantum field theories are described.
Bibliography: 34 titles.
Keywords: integrable systems, Kadomtsev–Petviashvili hierarchy, Toda lattice hierarchy, boson-fermion correspondence, Hurwitz numbers.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00383-а
Received: 25.12.2014
Bibliographic databases:
Document Type: Article
UDC: 512.542.74+515.162.2+517.958:530.145
MSC: Primary 14H70, 37K20, 81R12; Secondary 57R56
Language: English
Original paper language: Russian
Citation: M. È. Kazarian, S. K. Lando, “Combinatorial solutions to integrable hierarchies”, Russian Math. Surveys, 70:3 (2015), 453–482
Citation in format AMSBIB
\Bibitem{KazLan15}
\by M.~\`E.~Kazarian, S.~K.~Lando
\paper Combinatorial solutions to integrable hierarchies
\jour Russian Math. Surveys
\yr 2015
\vol 70
\issue 3
\pages 453--482
\mathnet{http://mi.mathnet.ru//eng/rm9661}
\crossref{https://doi.org/10.1070/RM2015v070n03ABEH004952}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3400565}
\zmath{https://zbmath.org/?q=an:06498433}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RuMaS..70..453K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361625600002}
\elib{https://elibrary.ru/item.asp?id=23780212}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84942055178}
Linking options:
  • https://www.mathnet.ru/eng/rm9661
  • https://doi.org/10.1070/RM2015v070n03ABEH004952
  • https://www.mathnet.ru/eng/rm/v70/i3/p77
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1400
    Russian version PDF:562
    English version PDF:53
    References:76
    First page:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024