Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2015, Volume 70, Issue 5, Pages 789–856
DOI: https://doi.org/10.1070/RM2015v070n05ABEH004964
(Mi rm9651)
 

This article is cited in 39 scientific papers (total in 39 papers)

Integrable models and combinatorics

N. M. Bogolyubovab, K. L. Malysheva

a St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences
b St. Petersburg National Research University of Information Technology, Mechanics, and Optics
References:
Abstract: Relations between quantum integrable models solvable by the quantum inverse scattering method and some aspects of enumerative combinatorics and partition theory are discussed. The main example is the Heisenberg $XXZ$ spin chain in the limit cases of zero or infinite anisotropy. Form factors and some thermal correlation functions are calculated, and it is shown that the resulting form factors in a special $q$-parametrization are the generating functions for plane partitions and self-avoiding lattice paths. The asymptotic behaviour of the correlation functions is studied in the case of a large number of sites and a moderately large number of spin excitations. For sufficiently low temperature a relation is established between the correlation functions and the theory of matrix integrals.
Bibliography: 125 titles.
Keywords: correlation functions, Heisenberg magnet, four-vertex model, plane partitions, generating functions, symmetric functions.
Funding agency Grant number
Russian Science Foundation 14-11-00598
This work was supported by the Russian Science Foundation (grant no. 14-11-00598).
Received: 31.01.2015
Bibliographic databases:
Document Type: Article
UDC: 517.958+530.145
PACS: 02.10.Os; 03.65.-w
MSC: Primary 82B20, 37K60, 05E05; Secondary 82B30, 82B41, 82D40, 05C81
Language: English
Original paper language: Russian
Citation: N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856
Citation in format AMSBIB
\Bibitem{BogMal15}
\by N.~M.~Bogolyubov, K.~L.~Malyshev
\paper Integrable models and combinatorics
\jour Russian Math. Surveys
\yr 2015
\vol 70
\issue 5
\pages 789--856
\mathnet{http://mi.mathnet.ru//eng/rm9651}
\crossref{https://doi.org/10.1070/RM2015v070n05ABEH004964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438554}
\zmath{https://zbmath.org/?q=an:06608772}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RuMaS..70..789B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368253700001}
\elib{https://elibrary.ru/item.asp?id=24850535}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84955325517}
Linking options:
  • https://www.mathnet.ru/eng/rm9651
  • https://doi.org/10.1070/RM2015v070n05ABEH004964
  • https://www.mathnet.ru/eng/rm/v70/i5/p3
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025