Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2014, Volume 69, Issue 4, Pages 589–680
DOI: https://doi.org/10.1070/RM2014v069n04ABEH004907
(Mi rm9602)
 

This article is cited in 35 scientific papers (total in 35 papers)

Isotropic Markov semigroups on ultra-metric spaces

A. D. Bendikova, A. A. Grigor'yanb, Ch. Pittetc, W. Woessd

a Institute of Mathematics, Wroclaw University, Wroclaw, Poland
b Bielefeld University, Germany
c LATP, Université d'Aix-Marseille, Marseille, France
d Institut für Mathematische Strukturtheorie, Technische Universität Graz, Graz, Austria
References:
Abstract: Let $(X,d)$ be a separable ultra-metric space with compact balls. Given a reference measure $\mu $ on $X$ and a distance distribution function $\sigma$ on $[0,\infty)$, a symmetric Markov semigroup $\{P^{t}\}_{t\geqslant 0}$ acting in $L^{2}(X,\mu )$ is constructed. Let $\{\mathcal{X}_{t}\}$ be the corresponding Markov process. The authors obtain upper and lower bounds for its transition density and its Green function, give a transience criterion, estimate its moments, and describe the Markov generator $\mathcal{L}$ and its spectrum, which is pure point. In the particular case when $X=\mathbb{Q}_{p}^{n}$, where $\mathbb{Q}_{p}$ is the field of $p$-adic numbers, the construction recovers the Taibleson Laplacian (spectral multiplier), and one can also apply the theory to the study of the Vladimirov Laplacian. Even in this well-established setting, several of the results are new. The paper also describes the relation between the processes involved and Kigami's jump processes on the boundary of a tree which are induced by a random walk. In conclusion, examples illustrating the interplay between the fractional derivatives and random walks are provided.
Bibliography: 66 titles.
Keywords: ultra-metric measure space, metric trees, isotropic Markov semigroups, Markov generators, heat kernels, transition density, $p$-number field, Vladimirov–Taibleson operator, nearest neighbour random walk on a tree, Dirichlet form, harmonic functions with finite energy, traces of harmonic functions with finite energy.
Funding agency Grant number
Deutsche Forschungsgemeinschaft SFB 701
National Science Centre (Narodowe Centrum Nauki) 2012/05/B/ST 1/00613
Centre National de la Recherche Scientifique
Austrian Science Fund W1230-N13
P24028-N18
This work was begun and finished at Bielefeld University under the support of SFB 701 of the German Research Council. The first author was supported by Polish Government Scientific Research Fund (grant no. 2012/05/B/ST 1/00613). The second author was supported by the German Research Council (SFB 701). The third author was supported by the French National Centre for Scientific Research (CNRS). The fourth author was supported by the Austrian Science Fund (projects FWF W1230-N13 and FWF P24028-N18).
Received: 12.05.2014
Bibliographic databases:
Document Type: Article
UDC: 519.217.5+519.217.13+517.518.14
MSC: Primary 46S10, 60J25; Secondary 05C05, 11S80, 35S05
Language: English
Original paper language: Russian
Citation: A. D. Bendikov, A. A. Grigor'yan, Ch. Pittet, W. Woess, “Isotropic Markov semigroups on ultra-metric spaces”, Russian Math. Surveys, 69:4 (2014), 589–680
Citation in format AMSBIB
\Bibitem{BenGriPit14}
\by A.~D.~Bendikov, A.~A.~Grigor'yan, Ch.~Pittet, W.~Woess
\paper Isotropic Markov semigroups on ultra-metric spaces
\jour Russian Math. Surveys
\yr 2014
\vol 69
\issue 4
\pages 589--680
\mathnet{http://mi.mathnet.ru//eng/rm9602}
\crossref{https://doi.org/10.1070/RM2014v069n04ABEH004907}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3400536}
\zmath{https://zbmath.org/?q=an:06381131}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014RuMaS..69..589B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344817300001}
\elib{https://elibrary.ru/item.asp?id=21826596}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84910014711}
Linking options:
  • https://www.mathnet.ru/eng/rm9602
  • https://doi.org/10.1070/RM2014v069n04ABEH004907
  • https://www.mathnet.ru/eng/rm/v69/i4/p3
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025