Abstract:
A general method is proposed for finding sharp constants for the embeddings of the Sobolev spaces Hm(M) on an n-dimensional Riemannian manifold M into the space of bounded continuous functions, where m>n/2. The method is based on an analysis of the asymptotics with respect to the spectral parameter of the Green's function of an elliptic operator of order 2m whose square root has domain determining the norm of the corresponding Sobolev space. The cases of the n-dimensional torus Tn and the n-dimensional sphere Sn are treated in detail, as well as certain manifolds with boundary. In certain cases when M is compact, multiplicative inequalities with remainder terms of various types are obtained. Inequalities with correction terms for periodic functions imply an improvement for the well-known Carlson inequalities.
Bibliography: 28 titles.
This work was carried out with the financial support of the Russian Foundation for Basic Research (grant nos. 12-01-00203 and 11-01-00339), the Russian Ministry of Education and Science (contract no. 8502), and Programme no. 1 of the Russian Academy of Sciences.