|
This article is cited in 6 scientific papers (total in 6 papers)
Near soliton dynamics and singularity formation for $L^2$ critical problems
Y. Martela, F. Merlebc, P. Raphaelde, J. Szeftelfg a Ècole Polytechnique, Centre de Mathématiques, Palaiseau, France
b Institut des Hautes Études Scientifiques, Bures-sur-Ivette, France
c Université de Cergy-Pontoise, Cergy-Pontoise, France
d Université Paul Sabatier, Toulouse
e Institut Universitaire de France, Paris
f Centre National de la Recherche Scientifique, Paris, France
g Ècole Normale Supérieure, Paris, France
Abstract:
This survey reviews the state of the art concerning singularity formation for two canonical dispersive problems: the $L^2$ critical non-linear Schrödinger equation and the $L^2$ critical generalized KdV equation. In particular, the currently very topical question of classifying flows with initial data near a soliton is addressed.
Bibliography: 72 titles.
Keywords:
non-linear Schrödinger equation, critical equation, generalized Korteweg–de Vries equation, blowup, soliton, blowup profile, qualitative behaviour of solutions, non-linear dispersive equation.
Received: 27.10.2013
Citation:
Y. Martel, F. Merle, P. Raphael, J. Szeftel, “Near soliton dynamics and singularity formation for $L^2$ critical problems”, Russian Math. Surveys, 69:2 (2014), 261–290
Linking options:
https://www.mathnet.ru/eng/rm9574https://doi.org/10.1070/RM2014v069n02ABEH004888 https://www.mathnet.ru/eng/rm/v69/i2/p77
|
Statistics & downloads: |
Abstract page: | 565 | Russian version PDF: | 195 | English version PDF: | 32 | References: | 61 | First page: | 20 |
|