Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 6, Pages 1027–1072
DOI: https://doi.org/10.1070/RM2013v068n06ABEH004869
(Mi rm9552)
 

This article is cited in 28 scientific papers (total in 28 papers)

Yang–Baxter equation, parameter permutations, and the elliptic beta integral

S. È. Derkacheva, V. P. Spiridonovbc

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b Max Planck Institute for Mathematics, Bonn, Germany
c Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research
References:
Abstract: This paper presents a construction of an infinite-dimensional solution of the Yang–Baxter equation of rank 1 which is represented as an integral operator with an elliptic hypergeometric kernel acting in the space of functions of two complex variables. This $\mathrm{R}$-operator intertwines the product of two standard $\mathrm{L}$-operators associated with the Sklyanin algebra, an elliptic deformation of the algebra $\operatorname{sl}(2)$. The solution is constructed from three basic operators $\mathrm{S}_1$$\mathrm{S}_2$, and $\mathrm{S}_3$ generating the permutation group $\mathfrak{S}_4$ on four parameters. Validity of the key Coxeter relations (including a star-triangle relation) is based on the formula for computing an elliptic beta integral and the Bailey lemma associated with an elliptic Fourier transformation. The operators $\mathrm{S}_j$ are determined uniquely with the help of the elliptic modular double.
Bibliography: 37 titles.
Keywords: Yang–Baxter equation, Sklyanin algebra, permutation group, elliptic beta integral.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00570
11-01-12037
12-02-91052
11-01-00980
Deutsche Forschungsgemeinschaft KI 623/8-1
Ministry of Education and Science of the Russian Federation 12-09-0064
Received: 29.11.2012
Bibliographic databases:
Document Type: Article
UDC: 517.3+517.9
MSC: Primary 16T25; Secondary 33E20
Language: English
Original paper language: Russian
Citation: S. È. Derkachev, V. P. Spiridonov, “Yang–Baxter equation, parameter permutations, and the elliptic beta integral”, Russian Math. Surveys, 68:6 (2013), 1027–1072
Citation in format AMSBIB
\Bibitem{DerSpi13}
\by S.~\`E.~Derkachev, V.~P.~Spiridonov
\paper Yang--Baxter equation, parameter permutations, and the elliptic beta integral
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 6
\pages 1027--1072
\mathnet{http://mi.mathnet.ru//eng/rm9552}
\crossref{https://doi.org/10.1070/RM2013v068n06ABEH004869}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3203193}
\zmath{https://zbmath.org/?q=an:06286870}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68.1027D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332667100002}
\elib{https://elibrary.ru/item.asp?id=21277012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899717488}
Linking options:
  • https://www.mathnet.ru/eng/rm9552
  • https://doi.org/10.1070/RM2013v068n06ABEH004869
  • https://www.mathnet.ru/eng/rm/v68/i6/p59
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:891
    Russian version PDF:433
    English version PDF:26
    References:56
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024