Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 6, Pages 1027–1072
DOI: https://doi.org/10.1070/RM2013v068n06ABEH004869
(Mi rm9552)
 

This article is cited in 28 scientific papers (total in 28 papers)

Yang–Baxter equation, parameter permutations, and the elliptic beta integral

S. È. Derkacheva, V. P. Spiridonovbc

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b Max Planck Institute for Mathematics, Bonn, Germany
c Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research
References:
Abstract: This paper presents a construction of an infinite-dimensional solution of the Yang–Baxter equation of rank 1 which is represented as an integral operator with an elliptic hypergeometric kernel acting in the space of functions of two complex variables. This RR-operator intertwines the product of two standard LL-operators associated with the Sklyanin algebra, an elliptic deformation of the algebra sl(2)sl(2). The solution is constructed from three basic operators S1S1S2S2, and S3S3 generating the permutation group S4 on four parameters. Validity of the key Coxeter relations (including a star-triangle relation) is based on the formula for computing an elliptic beta integral and the Bailey lemma associated with an elliptic Fourier transformation. The operators Sj are determined uniquely with the help of the elliptic modular double.
Bibliography: 37 titles.
Keywords: Yang–Baxter equation, Sklyanin algebra, permutation group, elliptic beta integral.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00570
11-01-12037
12-02-91052
11-01-00980
Deutsche Forschungsgemeinschaft KI 623/8-1
Ministry of Education and Science of the Russian Federation 12-09-0064
Received: 29.11.2012
Bibliographic databases:
Document Type: Article
UDC: 517.3+517.9
MSC: Primary 16T25; Secondary 33E20
Language: English
Original paper language: Russian
Citation: S. È. Derkachev, V. P. Spiridonov, “Yang–Baxter equation, parameter permutations, and the elliptic beta integral”, Russian Math. Surveys, 68:6 (2013), 1027–1072
Citation in format AMSBIB
\Bibitem{DerSpi13}
\by S.~\`E.~Derkachev, V.~P.~Spiridonov
\paper Yang--Baxter equation, parameter permutations, and the elliptic beta integral
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 6
\pages 1027--1072
\mathnet{http://mi.mathnet.ru/eng/rm9552}
\crossref{https://doi.org/10.1070/RM2013v068n06ABEH004869}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3203193}
\zmath{https://zbmath.org/?q=an:06286870}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68.1027D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332667100002}
\elib{https://elibrary.ru/item.asp?id=21277012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899717488}
Linking options:
  • https://www.mathnet.ru/eng/rm9552
  • https://doi.org/10.1070/RM2013v068n06ABEH004869
  • https://www.mathnet.ru/eng/rm/v68/i6/p59
  • This publication is cited in the following 28 articles:
    1. G.A. Sarkissian, V.P. Spiridonov, “Complex and rational hypergeometric functions on root systems”, Journal of Geometry and Physics, 203 (2024), 105274  crossref
    2. Ilmar Gahramanov, Osman Erkan Kaluc, “Bailey pairs for the q-hypergeometric integral pentagon identity”, Eur. Phys. J. C, 83:11 (2023)  crossref
    3. Xin Zhang, Andreas Klümper, Vladislav Popkov, “Invariant subspaces and elliptic spin-helix states in the integrable open spin- 12 XYZ chain”, Phys. Rev. B, 106:7 (2022)  crossref
    4. Atakishiyeva M., Atakishiyev N., Zhedanov A., “An Algebraic Interpretation of the Intertwining Operators Associated With the Discrete Fourier Transform”, J. Math. Phys., 62:10 (2021), 101704  crossref  mathscinet  isi
    5. Sergey È. Derkachov, Alexander N. Manashov, “On Complex Gamma-Function Integrals”, SIGMA, 16 (2020), 003, 20 pp.  mathnet  crossref
    6. Spiridonov V.P., “Superconformal Indices, Seiberg Dualities and Special Functions”, Phys. Part. Nuclei, 51:4 (2020), 508–513  crossref  isi
    7. Vyacheslav P. Spiridonov, Moscow Lectures, 5, Partition Functions and Automorphic Forms, 2020, 271  crossref
    8. Spiridonov V.P., “the Rarefied Elliptic Bailey Lemma and the Yang Baxter Equation”, J. Phys. A-Math. Theor., 52:35 (2019), 355201  crossref  mathscinet  isi
    9. F. Brünner, V. P. Spiridonov, “4d $\mathcal N=1$ quiver gauge theories and the $A_n$ Bailey lemma”, J. High Energy Phys., 2018, no. 3, 105, 29 pp.  crossref  mathscinet  zmath  isi  scopus
    10. V. P. Spiridonov, “Rarefied elliptic hypergeometric functions”, Adv. Math., 331 (2018), 830–873  crossref  mathscinet  zmath  isi  scopus
    11. Eric M. Rains, “Multivariate Quadratic Transformations and the Interpolation Kernel”, SIGMA, 14 (2018), 019, 69 pp.  mathnet  crossref
    12. Belal Nazzal, Shlomo S. Razamat, “Surface Defects in E-String Compactifications and the van Diejen Model”, SIGMA, 14 (2018), 036, 20 pp.  mathnet  crossref
    13. D. Chicherin, V. P. Spiridonov, “The hyperbolic modular double and the Yang-Baxter equation”, Representation Theory, Special Functions and Painleve Equations - RIMS 2015, Advanced Studies in Pure Mathematics, 76, eds. H. Konno, H. Sakai, J. Shiraishi, T. Suzuki, Y. Yamada, Math Soc Japan, 2018, 95–123  crossref  mathscinet  isi
    14. Kamil Yu. Magadov, Vyacheslav P. Spiridonov, “Matrix Bailey Lemma and the Star-Triangle Relation”, SIGMA, 14 (2018), 121, 13 pp.  mathnet  crossref
    15. I. Gahramanov, Sh. Jafarzade, “Integrable lattice spin models from supersymmetric dualities”, Phys. Part. Nuclei Lett., 15:6 (2018), 650–667  crossref  isi  scopus
    16. I. Gahramanov, A. P. Kels, “The star-triangle relation, lens partition function, and hypergeometric sum/integrals”, J. High Energy Phys., 2017, no. 2, 040  crossref  mathscinet  isi  scopus
    17. J. Yagi, “Surface defects and elliptic quantum groups”, J. High Energy Phys., 2017, no. 6, 013, 31 pp.  crossref  mathscinet  isi  scopus
    18. Dmitry Chicherin, Sergey E. Derkachov, Vyacheslav P. Spiridonov, “From Principal Series to Finite-Dimensional Solutions of the Yang–Baxter Equation”, SIGMA, 12 (2016), 028, 34 pp.  mathnet  crossref
    19. D. Chicherin, S. E. Derkachov, V. P. Spiridonov, “New elliptic solutions of the Yang–Baxter equation”, Comm. Math. Phys., 345:2 (2016), 507–543  crossref  mathscinet  zmath  isi  elib  scopus
    20. K. Maruyoshi, J. Yagi, “Surface defects as transfer matrices”, Prog. Theor. Exp. Phys., 2016:11 (2016), 113B01  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:986
    Russian version PDF:458
    English version PDF:41
    References:72
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025