Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 3, Pages 401–433
DOI: https://doi.org/10.1070/RM2013v068n03ABEH004838
(Mi rm9525)
 

This article is cited in 19 scientific papers (total in 19 papers)

Lagrange's principle in extremum problems with constraints

E. R. Avakova, G. G. Magaril-Il'yaevbc, V. M. Tikhomirovc

a Institute of Control Sciences of the Russian Academy of Sciences
b Institute for Information Transmission Problems of the Russian Academy of Sciences
c Moscow State University
References:
Abstract: In this paper a general result concerning Lagrange's principle for so-called smoothly approximately convex problems is proved which encompasses necessary extremum conditions for mathematical and convex programming, the calculus of variations, Lyapunov problems, and optimal control problems with phase constraints. The problem of local controllability for a dynamical system with phase constraints is also considered. In an appendix, results are presented that relate to the development of a ‘Lagrangian approach’ to problems where regularity is absent and classical approaches are meaningless.
Bibliography: 33 titles.
Keywords: extremum problem, optimal control, phase constraints, mix, controllability, abnormality.
Funding agency Grant number
Russian Foundation for Basic Research 10-01-00188
11-01-00529
Received: 11.10.2012
Russian version:
Uspekhi Matematicheskikh Nauk, 2013, Volume 68, Issue 3(411), Pages 5–38
DOI: https://doi.org/10.4213/rm9525
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: Primary 49J40; Secondary 49M05
Language: English
Original paper language: Russian
Citation: E. R. Avakov, G. G. Magaril-Il'yaev, V. M. Tikhomirov, “Lagrange's principle in extremum problems with constraints”, Uspekhi Mat. Nauk, 68:3(411) (2013), 5–38; Russian Math. Surveys, 68:3 (2013), 401–433
Citation in format AMSBIB
\Bibitem{AvaMagTik13}
\by E.~R.~Avakov, G.~G.~Magaril-Il'yaev, V.~M.~Tikhomirov
\paper Lagrange's principle in extremum problems with constraints
\jour Uspekhi Mat. Nauk
\yr 2013
\vol 68
\issue 3(411)
\pages 5--38
\mathnet{http://mi.mathnet.ru/rm9525}
\crossref{https://doi.org/10.4213/rm9525}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113856}
\zmath{https://zbmath.org/?q=an:06216131}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..401A}
\elib{https://elibrary.ru/item.asp?id=20423498}
\transl
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 3
\pages 401--433
\crossref{https://doi.org/10.1070/RM2013v068n03ABEH004838}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000324160700002}
\elib{https://elibrary.ru/item.asp?id=20454784}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883851972}
Linking options:
  • https://www.mathnet.ru/eng/rm9525
  • https://doi.org/10.1070/RM2013v068n03ABEH004838
  • https://www.mathnet.ru/eng/rm/v68/i3/p5
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1419
    Russian version PDF:458
    English version PDF:28
    References:139
    First page:134
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024