Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 2, Pages 227–281
DOI: https://doi.org/10.1070/RM2013v068n02ABEH004829
(Mi rm9510)
 

This article is cited in 4 scientific papers (total in 4 papers)

Soliton asymptotics for systems of ‘field-particle’ type

V. M. Imaykin

Moscow Institute for the Development of Education
References:
Abstract: This survey is devoted to the recent mathematical progress in the study of interaction between particles and fields. It covers a series of papers from 2000 till now. Three systems describing the interaction of a field and a charged particle are considered: the scalar Klein–Gordon field or the wave field coupled to a particle, and the Maxwell–Lorentz system describing a charged particle in the Maxwell field. The Wiener condition on the charge density of the particle was introduced in the first papers on long-time convergence to solitons in the absence of external potentials (the 1990s) and turned out to play an important role in the investigations reflected here of soliton asymptotics for solutions with initial data sufficiently close to invariant solitary manifolds. Our approach is based on using the Hamiltonian structure of the systems and the Buslaev–Perelman method of symplectic projection.
Bibliography: 49 titles.
Keywords: non-linear system of ‘field-particle’ type, soliton, solitary manifold, symplectic projection, linearization around a soliton, modulation equations, decay of the transversal component, Wiener condition.
Received: 06.02.2013
Bibliographic databases:
Document Type: Article
UDC: 517.955.8
MSC: Primary 34C08, 37K40, 35Q61; Secondary 35P25, 35Q60
Language: English
Original paper language: Russian
Citation: V. M. Imaykin, “Soliton asymptotics for systems of ‘field-particle’ type”, Russian Math. Surveys, 68:2 (2013), 227–281
Citation in format AMSBIB
\Bibitem{Ima13}
\by V.~M.~Imaykin
\paper Soliton asymptotics for systems of `field-particle' type
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 2
\pages 227--281
\mathnet{http://mi.mathnet.ru/eng/rm9510}
\crossref{https://doi.org/10.1070/RM2013v068n02ABEH004829}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113962}
\zmath{https://zbmath.org/?q=an:06196294}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..227I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320927900002}
\elib{https://elibrary.ru/item.asp?id=20423487}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880338308}
Linking options:
  • https://www.mathnet.ru/eng/rm9510
  • https://doi.org/10.1070/RM2013v068n02ABEH004829
  • https://www.mathnet.ru/eng/rm/v68/i2/p33
  • This publication is cited in the following 4 articles:
    1. Alexander Komech, Elena Kopylova, Attractors of Hamiltonian Nonlinear Partial Differential Equations, 2021  crossref
    2. A. I. Komech, E. A. Kopylova, “Attractors of nonlinear Hamiltonian partial differential equations”, Russian Math. Surveys, 75:1 (2020), 1–87  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. E. .A. Kopylova, A. I. Komech, “Asymptotic stability of stationary states in the wave equation coupled to a nonrelativistic particle”, Russ. J. Math.Phys., 23:1 (2016), 93–100  crossref  mathscinet  zmath  isi  scopus
    4. Komech A., “Attractors of Hamilton nonlinear PDEs”, Discret. Contin. Dyn. Syst., 36:11 (2016), 6201–6256  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:631
    Russian version PDF:269
    English version PDF:20
    References:104
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025