Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2012, Volume 67, Issue 6, Pages 1069–1089
DOI: https://doi.org/10.1070/RM2012v067n06ABEH004818
(Mi rm9501)
 

This article is cited in 3 scientific papers (total in 4 papers)

Inverse Dirichlet-to-Neumann problem for nodal curves

G. Henkinab, V. Michela

a Université Pierre et Marie Curie, Paris, France
b Central Economics and Mathematics Institute of the Russian Academy of Sciences, Moscow, Russia
References:
Abstract: This paper proposes direct and inverse results for the Dirichlet and Dirichlet-to-Neumann problems for complex curves with nodal type singularities. As an application, it gives a method for reconstructing the conformal structure of a compact surface of $\mathbb R^3$ with constant scalar conductivity from electric current density measurements in a neighbourhood of one of its points.
Bibliography: 23 titles.
Keywords: conformal structure, Riemann surface, nodal curve, Green function, inverse Dirichlet-to-Neumann problem.
Received: 31.10.2012
Russian version:
Uspekhi Matematicheskikh Nauk, 2012, Volume 67, Issue 6(408), Pages 101–124
DOI: https://doi.org/10.4213/rm9501
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: English
Original paper language: Russian
Citation: G. Henkin, V. Michel, “Inverse Dirichlet-to-Neumann problem for nodal curves”, Uspekhi Mat. Nauk, 67:6(408) (2012), 101–124; Russian Math. Surveys, 67:6 (2012), 1069–1089
Citation in format AMSBIB
\Bibitem{HenMic12}
\by G.~Henkin, V.~Michel
\paper Inverse Dirichlet-to-Neumann problem for nodal curves
\jour Uspekhi Mat. Nauk
\yr 2012
\vol 67
\issue 6(408)
\pages 101--124
\mathnet{http://mi.mathnet.ru/rm9501}
\crossref{https://doi.org/10.4213/rm9501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3075078}
\zmath{https://zbmath.org/?q=an:06155547}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RuMaS..67.1069H}
\elib{https://elibrary.ru/item.asp?id=20423473}
\transl
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 6
\pages 1069--1089
\crossref{https://doi.org/10.1070/RM2012v067n06ABEH004818}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315950100003}
\elib{https://elibrary.ru/item.asp?id=20486778}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84875192147}
Linking options:
  • https://www.mathnet.ru/eng/rm9501
  • https://doi.org/10.1070/RM2012v067n06ABEH004818
  • https://www.mathnet.ru/eng/rm/v67/i6/p101
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:707
    Russian version PDF:243
    English version PDF:26
    References:79
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024