Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2012, Volume 67, Issue 4, Pages 599–684
DOI: https://doi.org/10.1070/RM2012v067n04ABEH004803
(Mi rm9488)
 

This article is cited in 26 scientific papers (total in 26 papers)

Methods of geometric function theory in classical and modern problems for polynomials

V. N. Dubinin

Far Eastern Federal University, Vladivostok
References:
Abstract: This paper gives a survey of classical and modern theorems on polynomials, proved using methods of geometric function theory. Most of the paper is devoted to results of the author and his students, established by applying majorization principles for holomorphic functions, the theory of univalent functions, the theory of capacities, and symmetrization. Auxiliary results and the proofs of some of the theorems are presented.
Bibliography: 124 titles.
Keywords: majorization principles, Schwarz's lemma, capacities, univalent functions, symmetrization, inequalities, polynomials, critical points, critical values, rational functions.
Received: 12.09.2011
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: Primary 30C10; Secondary 30C50, 30C85
Language: English
Original paper language: Russian
Citation: V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials”, Russian Math. Surveys, 67:4 (2012), 599–684
Citation in format AMSBIB
\Bibitem{Dub12}
\by V.~N.~Dubinin
\paper Methods of geometric function theory in classical and modern problems for polynomials
\jour Russian Math. Surveys
\yr 2012
\vol 67
\issue 4
\pages 599--684
\mathnet{http://mi.mathnet.ru//eng/rm9488}
\crossref{https://doi.org/10.1070/RM2012v067n04ABEH004803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013845}
\zmath{https://zbmath.org/?q=an:1267.30012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310789000001}
\elib{https://elibrary.ru/item.asp?id=20423456}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868642061}
Linking options:
  • https://www.mathnet.ru/eng/rm9488
  • https://doi.org/10.1070/RM2012v067n04ABEH004803
  • https://www.mathnet.ru/eng/rm/v67/i4/p3
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1741
    Russian version PDF:496
    English version PDF:34
    References:146
    First page:96
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024